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SUMMARY 

Empirical and theoretical investigations have resulted in 

techniques for improving the reliability and performance of 

large-scale multilevel microcircuit arrays. The detailed 

behavior and effects of surface ions have been measured as a 

function of applied voltage, temperature, time, humidity and the 

testing history of the device. The model for surface ion 

behavior has been extended to include the case in which the 

surface ion density is a function of the surface potential of 

the oxide. Vapor deposited oxides have been extensively studied 

to establish their value as second-layer oxides for multilevel 

microcircuitry. The use of phosphorus as an additive to vapor 

plated oxide layers has been shown to improve the reproducibil- 

ity and the stability of the electrical properties of vapor 

plated oxides. 

A broad review has been prepared of each af the factors 

that should be considered in a program to develop and produce 

highly reliable large scale multilevel microcircuit arrays. 

A number of ways are suggested for including test structures 

in production microcircuit wafers for process control, and 

for analyses of yield and reliability problems. 

vii 



INTRODUCTION 

Large-scale i n t e g r a t i o n  ( L S I )  o f f e r s  t h e  p o t e n t i a l  of 

improving t h e  r e l i a b i l i t y ,  cos t ,  and performance of complex 

e l e c t r o n i c  systems conta in ing  s i l i c o n  i n t e g r a t e d  c i rcu i t s .  

LSI c i r c u i t  a r r a y s  conta in ing  thousands of components w i l l  

have m u l t i l e v e l  me ta l i za t ion  p a t t e r n s  i n  c o n t r a s t  t o  c u r r e n t l y  

used in t eg ra t ed  c i r c u i t s ,  both b i p o l a r  and MOS, which conta in  

a s i n g l e - l e v e l  me ta l i za t ion  p a t t e r n  over a thermally-grown 

S i O a  l aye r .  Therefore,  m u l t i l e v e l  LSI a r r a y s  r e q u i r e  a d d i t i o n a l  

processing s t e p s  f o r  d i e l e c t r i c  depos i t ion  and photol i thographic  

d e l i n e a t i o n  and f o r  second m e t a l  l a y e r  depos i t ion  and d e l i n e a t i o n .  

These a d d i t i o n a l  s t e p s ,  and the  procedures and condi t ions  by 

which they a r e  accomplished, can produce s i g n i f i c a n t  changes i n  

t h e  e l e c t r i c a l  performance and r e l i a b i l i t y  of s i l i c o n  i n t e g r a t e d  

c i r c u i t s .  

A necessary p a r t  of t h e  success fu l  development of LSI 

c i r c u i t r y  i s  t h e  development of p r a c t i c a l  means f o r  i n su r ing  the  

h ighes t  l e v e l  of r e l i a b i l i t y .  This r e l i a b i l i t y  is  a f f e c t e d  by 

m e t a l  and con tac t  problems and by f a c t o r s  t h a t  in f luence  the  

fundamental p r o p e r t i e s  of the  i n s u l a t o r - s i l i c o n  i n t e r f a c e .  This 

r e p o r t  p re sen t s  t h e  r e s u l t s  of a program t o  i n v e s t i g a t e  

techniques f o r  improving the  r e l i a b i l i t y  and performance of large-  

scale m u l t i l e v e l  a r r a y s  by improving t h e  fundamental p r o p e r t i e s  
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and the  s t a b i l i t y  of t h e  i n s u l a t o r - s i l i c o n  i n t e r f a c e  

The f a b r i c a t i o n  of la rge-sca le  m u l t i l e v e l  a r r ays  requires 

a number of new m a t e r i a l s  and f a b r i c a t i o n  processes .  D i f f e ren t  

m a t e r i a l s  and processes  m u s t  be used t o  form a second or  t h i r d  

i n s u l a t o r  l a y e r  than those used t o  form t h e  f i r s t  i n s u l a t o r  

l a y e r .  The f i r s t  l a y e r  i s  formed by thermal oxida t ion  of t h e  

s i l i c o n  i n  order  t o  form an i n s u l a t o r - s i l i c o n  i n t e r f a c e  wi th  a 

low dens i ty  of su r face  states.  Additional i n s u l a t o r  l a y e r s  can 

only be formed by techniques o the r  than thermal oxida t ion  

because they m u s t  o v e r l i e  metal i n  some a r e a s ,  and because the  

temperatures requi red  f o r  thermal oxida t ion  a r e  wel l  above t h e  

aluminum-silicon e u t e c t i c  temperature (577OC) . The new 

processing s t eps ,  m a t e r i a l s ,  and processes can introduce f a i l u r e  

modes t h a t  are e n t i r e l y  new, and they can cause previously 

recognized f a i l u r e  modes t o  appear more f r equen t ly .  The 

p r o b a b i l i t y  of f a i l u r e  may inc rease  because of a decreased 

s t a b i l i t y ,  o r  because of a change i n  the  i n i t i a l  c h a r a c t e r i s t i c s  

which provides less to le rance  f o r  i n s t a b i l i t y .  

I t  is  the  purpose of our i n v e s t i g a t i o n  t o  uncover a l l  of 

t h e  p o t e n t i a l  sur face- re la ted  f a i l u r e  modes of m u l t i l e v e l  LSI  

c i r c u i t r y  and t o  develop techniques f o r  minimizing the  prob- 

a b i l i t y  of t h e i r  occurrence.  

t h e  development of s e n s i t i v e  techniques f o r  d e t e c t i n g  and f o r  

An important p a r t  of t h i s  work i s  

measuring each of t he  types of i n s t a b i l i t y  t h a t  a r e  known t o  

2 



degrade LSI  c i r c u i t s .  The r e s u l t s  of the program w i l l  be 

a p p l i c a b l e  t o  both  MOS and b i p o l a r  a r r a y s .  

The F i r s t  In t e r im  Report, dated November 1967, covered 

the following: 

1. 

2. 

3. 

4. 

5. 

A basic understanding o f  the fundamental e lectr ical  

p r o p e r t i e s  of  the Si -Si02  i n t e r f a c e  of s t r u c t u r e s  

having a d i e l e c t r i c  l a y e r  over de l inea ted  m e t a l  

l a y e r s  i n  m u l t i l e v e l  mic roc i r cu i t  s t r u c t u r e s .  

A u s e f u l  model which provides an o v e r a l l  view of  

a l l  of the inf luences  on these e lectr ical  p rope r t i e s .  

A number of oxide l a y e r s  of var ious  materials and 

deposi ted by var ious processes  w e r e  experimental ly  

evaluated f o r  the i r  poss ib l e  use  as second-layer 

i n s u l a t o r  materials for m u l t i l e v e l  L S I  c i r c u i t r y .  

F e a s i b i l i t y  w a s  demonstrated for a set of t e s t  

s t r u c t u r e s ,  equipment, and techniques f o r  eva lua t ing  

var ious  i n s u l a t o r  materials and depos i t i on  processes .  

A n  ex tens ive  array of  data w a s  compiled on both 

n-on-p and p-on-n t es t  s t r u c t u r e s ,  both w i t h  and 

without  a vapor-plated Si02 second i n s u l a t o r  l aye r .  

3 



The work covered i n  t h e  F i r s t  I n t e r i m  Report w a s  

b a s i c a l l y  explora tory .  Problem areas w e r e  i d e n t i f i e d ,  and 

t e s t  s t r u c t u r e s ,  equipment and procedures w e r e  developed f o r  

s tudying t h e  mechanisms a s soc ia t ed  wi th  f a i l u r e  modes of 

m u l t i l e v e l  L S I  s t r u c t u r e s .  The work covered i n  t h i s  Second 

I n t e r i m  Report has been d i r e c t e d  a t  t h e  following ob jec t ives :  

1. Improvement of t h e  understanding of the  d e t a i l e d  

na tu re  of the important types  of i n s t a b i l i t y .  

2 .  Development of p r a c t i c a l  procedures f o r  the  most 

e f f e c t i v e  means f o r  making s e n s i t i v e  measurements 

of t he  s t a b i l i t y  of devices  made by var ious  

processes  and of var ious  m a t e r i a l s .  

3 .  The formulation of techniques f o r  assur ing  t h e  

m a x i m u m  r e l i a b i l i t y  f o r  LSI  c i r c u i t r y  a t  t he  lowest 

c o s t  * 

I n  order  t o  maintain a broad f a m i l i a r i t y  and understanding 

of the  r e l e v a n t  work i n  t h i s  f i e l d  being repor ted  by o the r  

i n v e s t i g a t o r s ,  w e  con t inua l ly  maintain an updated bibl iography 

of M I S  s t u d i e s .  Appendix A i s  a bibl iography t h a t  has been 

updated t o  Apr i l  1, 1968. Most of the  papers l i s t e d  w e r e  i n  

a bibl iography d i s t r i b u t e d  a t  t h e  1968 Semiconductor I n t e r f a c e  

S p e c i a l i s t s  Conference i n  March. The paper i n  Appendix A 

has been accepted f o r  pub l i ca t ion  i n  t h e  next s p e c i a l  M I S  

i s s u e  of t h e  IEEE Transact ions on Electron Devices t o  

4 
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supplement the paper that  w a s  published’ i n  the previous 

s p e c i a l  MIS i s s u e  i n  N o v e m b e r  1967. 

EXPERIMENTAL STUDIES 

Oxide Preparat ion 

The oxides s t u d i e d  i n  this program w e r e  prepared by 

techniques t h a t  w e r e  developed i n  connection with company- 

sponsored programs. These techniques are s i m i l a r  t o  those  

used gene ra l ly  i n  t h e  indus t ry .  

a r e  prepared a t  4OO0C by t h e  r e a c t i o n  

Vapor p l a t ed  Si02 l a y e r s  

SiH4 + 202 4 Si02  + 2H20. 

The process i s  r e l a t i v e l y  simple and i s  accomplished by 

p lac ing  the i n t e g r a t e d  c i r c u i t  wafer on a hea ted  s u b s t r a t e  i n  

a w e l l  c o n t r o l l e d  stream of SiH4 and dry 0 2  d i l u t e d  with dry 

N2.  A r eac t ion  occurs a t  t h e  su r face  of t h e  hea ted  wafer and 

depos i t s  a f i lm  of Si02. The apparatus  is  shown i n  Figure 1. 

Further  information on t h e  process,  and on the  p rope r t i e s  of 

f i lms  obtained has  been publ ished ( R e f .  2,3,4 and 5 ) .  

Physical  p rope r t i e s  of t hese  vapor-deposited Si02 l a y e r s  

t h a t  have been measured include: 

Stress- - - - - - 
Index of r e f r a c t i o n  - 1.456 (Nag) 
Etch rate - - - - - - 80 a/sec, a t  3OoC &O. l 0 C ,  i n  

- 3 x l o 9  dynes/cm2 ( t e n s i l e )  
Density - - - - - - - 3.2 gms/cc 

an e t chan t  prepared i n  t h e  
proport ions 1500 cc DI H20,  
1000 gms NH4F and 275 cc 
HF (49%) . 

5 
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Because of the w e l l  known s t a b l i z i n g  affect  of phosphorus 

i n  oxides formed a t  h igh  temperatures,  we have developed, on a 

company-sponsored program, techniques f o r  depos i t ing  phosphorus- 

conta in ing  vapor p l a t ed  S i 0 2  a t  40OoC, The process i s  similar t o  

t ha t  f o r  vapor p l a t i n g  pure Si02,  bu t  w i t h  PH3 being added t o  the  

r e a c t a n t  gas mixture.  The proport ion of the phosphorus contained 

i n  the deposi ted oxide is  con t ro l l ed  by the proport ion of t h e  PH3 

i n  the r e a c t a n t  gas mixture.  The percentage (weight) of the 

phosphorus i n  the deposi ted f i l m s  w a s  measured on an emission 

spectrograph and w a s  c o r r e l a t e d  w i t h  the composition of the 

r e a c t a n t  gas mixture as shown i n  Figure 2. 

W e  have measured the following phys ica l  p rope r t i e s  of 

the phosphorus-containing vapor deposi ted f i l m s  . 
2.2 gms/cc Density - - - - - - - - - 

Index of r e f r a c t i o n  - - - - 1.50 (NaD) 

E t c h  rate - - - - - - - - - 166 8/sec* 

These parameters are f a i r l y  i n s e n s i t i v e  t o  the phosphorus 

content .  For t h a t  reason, we  have measured the absorpt ion of 

monochromatic i n f r a red  l i g h t  as obtained by r e f l e c t i o n  a s  a func t ion  

of the r e l a t i v e  phosphorus content  i n  the f i lms ,  and as func t ion  of 

the  thickness  of the mixed oxide f i l m .  Figures 3 and 4 summarize 

7 



Figure 2.  Phosphorus i n  oxide f i l m  v s .  PH3 i n  r e a c t a n t  gas mixture.  
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TRANSMISSION, AT 7 . 6 ~ ~  
THROUGH PHOS PHOSl LI CATE 

PLOTTED V S  PHOSPHORUS CONTENl 

PHOSPHOSI LICATI 
FI LM THICKNESS 
0 7.5k% 

15 k %  

0 2 0 k %  

I 
I 

4 . t 
I 

5 IO 15 
PHOSPHORUS IN REACTANT GAS MIXTURE (MOLE O h )  

Figure 3 .  Transmission, a t  7 . 6  v, through phosphosi l icate  
vs. phosphorus content .  
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THROUGH PHOS PHOSILICATE 

PLOTTED VS. FILM THICKNESS 

5 IO 15 20 25 30 
FILM THICKNESS ( k i )  

A 6.8 MOLE O/o 

PHOSPHINE IN 
REACTANT GAS 
MIXTURE 

0 11.5 MOLE O/e 
PHOSPHINE IN 
REACTANT GAS 
MIXTURE 

Figure 4. Transmission, a t  7.6 v, through phosphos i l ica te  
vs .  f i lm  thickness .  
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provide a good means f o r  monitoring and c o n t r o l l i n g  the 

phosphorus con ten t  of t h e  oxide l aye r s .  Nanda e t  al .  

( R e f .  6 )  have reported that  an I R  absorp t ion  l i n e  a t  7.6 p 

i s  a measure of dens i ty  of P=O bonds i n  the oxide.  

A second means f o r  measuring the  phosphorus conten t  

of the oxide involves  a d i f f u s i o n  process.  A 5Q-cm, p-type- 

s i l i c o n  w a f e r  w i t h  a uniform phosphorus-containing vapor 

p l a t e d  oxide i s  hea ted  t o  12OO0C f o r  1 / 2  hour.  

i s  then  etched away and the s h e e t  r e s i s t i v i t y  of the n-type 

d i f f u s i o n  l a y e r  is  measured w i t h  a 4-point probe. Table I 

g ives  the dependence of t h e  sheet r e s i s t i v i t y  ps, and the 

d i f f u s i o n  depth on the mole percentage of the PH3 i n  the 

r e a c t a n t  gas composition. The first column i n  Table I 

gives  the mole percent  of PH3 i n  the r e a c t a n t  gas mixture. 

The oxide 

The r e p r o d u c i b i l i t y  of t h e  phosphorus content  i s  ind ica ted  

by the d a t a  i n  Table 11. 

The depos i t ion  of r-f spu t t e red  oxides w a s  discussed i n  

a paper by B i r k  ( R e f .  7 ) .  
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TABLE I 

DIFFUSION OF PHOSPHORUS INTO S I L I C O N  
FROM DEPOSITED OXIDE 

PH3 i n  Sheet D e p t h  of 
R e a c t a n t  R e s i s t i v i t y  D i f f u s e d  
Mixture of D i f f u s e d  Layer 
( M o l e  %I Layer (s2/0) ( N a g  F r i n g e s )  

10.5 2.5 7 

7.5 2.5 6 

5.8 4.5 5 

4.3 8.1 4 

2.7 

2 . 1  

47.0 

962.0 

3 

ui 

’ TABLE I1 

SHEET R E S I S T I V I T Y  OF THE DIFFUSED LAYER VS.  THICKNESS 
OF VAPOR PLATED PHOSPHOSILICATE 

Thickness of 
V a p o r  Plated Sheet 

Phosphosilicate R e s i s t i v i t y  
Layer ( A )  (.Q/u) 

2000 48 

8000 

16000 

12 

50  

5 0  



Preliminary Evaluation of Poss ib le  Candidates f o r  
Second Layer I n s u l a t o r  Mater ia l s  and Processes 

A second l a y e r  oxide should have stable electrical  p r o p e r t i e s  

and it should not  change t h e  su r face  p o t e n t i a l  of t h e  s i l i c o n .  

W e  have supplemented t h e  work repor ted  i n  t h e  F i r s t  I n t e r i m  

Report by measuring t h e  charge d e n s i t i e s  i n  a d d i t i o n a l  samples of 

oxides t h a t  have been considered as candidates  f o r  second l a y e r  

i n s u l a t o r s .  Each of t h e s e  samples was formed i n t o  MOS capac i to r s  

with a l l  of t h e  oxide l a y e r s  beneath t h e  metal .  Half of each 

wafer w a s  metalized with aluminum from an electron-gun evaporator 

and h a l f  was metalized with A1 from a resis tance-heated tungsten c o i l  

I f  not  otherwise s p e c i f i e d ,  t h e  phosphos i l ica te  l a y e r s  

discussed i n  t h i s  r e p o r t  w e r e  deposi ted from a r e a c t a n t  gas 

mixture containing 4% (mole) phosphine. This y i e l d s  l a y e r s  

containing approximately 3% phosphorus by weight.  

The r e s u l t s  a r e  summarized i n  Table 111. W e  conclude from 

t h i s  da t a  t h a t :  

1. The phosphorus-containing vapor p l a t ed  Si02 has  y ie lded  

low l e v e l s  of both immobile and of mobile charge.  

2 .  The presence of phosphorus i n  t h e  vapor p l a t ed  oxide 

has  immobilized the  sodium t h a t  was introduced by 

t h e  tungsten c o i l  evaporation. 
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TABLE III 

CHARGE DENSITIES IN CANDIDATES 
FOR SECOND LAYER INSULATOR 

1011 &arqes/cm2 
Mobile Mobile 

Immobile (300'C) (25',C) 

1011 &arqes/cm2 
Mobile Mobile 

Immobile (300'C) (25',C) 

Thermally grown Si02 
(#587) 

Electron gun 
Tungsten coil 

6000 A vapor plated Si02-Al203 
on 2000 H thermally grown Si02 
(#586) 

Electron gun 
Tungsten coil 

6000 A vapor plated phosphorus- 
containing si02 on 2000 H 
thermally grown Si02 
(#585) 

Electron gun 
Tungsten coil 

5000 H of vapor plated Si02 on 
1000 A of vapor plated phosphorus- 
containing si02 on 2000 H of 
thermally grown Si02 
(#590) 

Electron gun 
Tungsten coil 

14 

3.2 
3 - 3  

20.0 
20.0 

1.0 1.0 
8.0 12 .o 

30.0 <1.0 
>30.0 --- 

1.9 0.5 0.3 
1.9 0.2 0.1 

9.0 
12.0 

2.5 <1.0 
1.5 <1.0 



3.  The A1 0 -Si02 has very high immobile and mobile 

charge d e n s i t i e s .  T h i s  r e s u l t  does not  confirm 

2 3  

t h e  r e s u l t  repor ted  i n  t h e  F i r s t  In te r im Report 

i n  which a 2000 t h i c k  l a y e r  of vapor-plated 

S i 0 2 - A l 2 O 3  on a 2000 t h i c k  l a y e r  of thermally 

grown S i 0 2  showed a f l a t  band vol tage  range of 

-3  t o  + 3  v o l t s .  (This  i s  roughly equiva len t  t o  an 

immobile charge dens i ty  of 1 . 5  x 10l1 negat ive 

charges/cm2 and a mobile charge dens i ty  of 4 x lG11 

p o s i t i v e  charges/cm*. 

4. There is  a high immobile charge dens i ty  i n  samples 

having a vapor p l a t e d  l aye r  of pure Si02 over a 

phosphorus conta in ing  vapor p l a t ed  l aye r .  

I n  the F i r s t  In te r im Report, we repor ted  t h a t  r-f  sput- 

t e r e d  S i 0 2  contains  a high d e n s i t y  of mobile charge.  

then  we have taken more d a t a  on o the r  samples of r-f  spu t t e red  

Si02.  

whether negat ive mobile ions e x i s t  i n  t h e s e  oxides we  l i s t  t h e  

l i m i t s  of t h e  range i n  t h e  e f f e c t i v e  charge dens i ty  t h a t  w e r e  

S i n c e  

Table I V  summarizes our da ta .  Because we do not know 

measured after d r i f t i n g  a t  300 C f o r  1 2  minutes under a n  

appl ied  bias of p lus  o r  minus 1 2  v o l t s  i n  the metal .  

15 



Sample # 

52811 

529A 

609 

TABLE IV 

CHARGE DENSITIES IN R-F SPUTTERED OXIDES 

Charqes/cm 2 

After -12V After +12v a - 

+4.0 

+2.0 

-2.0 

+28. 

+ 3 7 .  

-1-18. 

24 

35 

20 

613 +3.3 +39. 36 

Samples 528A and 529B have single 5000 A thick layers 

of sputtered oxide on bare silicon. Samples 609 and 613 had 

a first layer of 1400 A of thermally grown oxide and a second 

layer of 2000 .!. of sputtered oxide. 

Effects of Polarization of Phosphosilicate Glass 

The polarizability of phosphosilicate layers has been 

described by Snow and Deal (Ref. 8 and 9) for samples that 

were formed by thermal oxidation and diffusion at high tem- 

peratures. Because of the potential instability that this 

polarization could introduce to microcircuits containing 
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I -  

* 9 

t h i c k  l a y e r s  of phosphos i l ica te ,  w e  have s tud ied  t h e  p o l a r i -  

za t ion  of phosphos i l ica tes  prepared by t h e  vapor p l a t i n g  

process a t  40OoC. 

a c i t o r s  having a f i r s t  l a y e r  of  2000i of thermally grown Si02  

and a second l a y e r  of  6000 w of 4% vapor p l a t e d  phosphosi l i -  

cate. The d r i f t i n g  a t  It12 vo l t s  shows there w e r e  very f e w  

mobile ions  i n  the oxide,  The s t rong  dependence of the  f l a t  

band vo l t age  on the  app l i ed  d r i f t  vo l t age  provides good ev i -  

dence that  the s h i f t s  i n  f l a t  band vo l t age  are due t o  p o l a r i -  

za t ion  of the phosphos i l ica te  g l a s s .  

Table V summarizes da t a  taken on MOS cap- 

TABLE V 

EVIDENCE OF POLARIZATION 
I N  PHOSPHORUS-CONTAINING VAPOR PLATED OXIDES 

B i a s  Conditions Average 
C o i l  -Evaporated Aluminum F l a t  Band V o l t a c r e  

-12V, 3OO0C, 

-200 V, RT*, 
-200 V, RT , 
-200 V, RT , 
+ 2 O O  V, RT , 
+2OO V, RT , 
-50 V, RT , 

+12v, 300"C, 
1 2  min. 
1 2  min. 
2 hrs. 
3 .5  h r s .  
68 h r s .  
48 h r s .  
96 h r s .  
68 h r s .  

Electron-Gun Evaporated Aluminum 
-12 V, 3OO0C, 1 2  min. 
+ 1 2  V, 3OO0C, 1 2  m i n .  
-200 V, RT , 2 h r s .  
-200 V, RT , 3.5  h r s .  
-200 V, RT , 68 h r s .  
+2OO V, RT , 48 h r s .  
+200 V, RT , 96 h r s .  
-50 V, RT , 68 h r s .  

(-) 7.0 V 
(-) 8 . 2  
(-) 4.8 
(-) 2.2 
(+) 2.5 
(-) 7.0 
(-) 16.7 
(-) 5 .7  

(-) 7.3 
(-) 9.0 
(-) 5.2 
(-) 3.2 
(+) 0.7 
(-) 7.7 
(-) 14.0 
(-) 6.0 

* RT - Room Temperature 
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P o l a r i z a t i o n  effects become more pronounced a s  t h e  

appl ied  vol tages  are increased ,  This can become a problem 

when vol tage-acce lera ted  t e s t i n g  i s  done w i t h  t he  su r face  

ion  t es t  s t r u c t u r e .  For  example, Figures 5 t o  8 show d a t a  

t h a t  w a s  taken on the su r face  ion  tes t  s t r u c t u r e .  A t  first 

glance one might i n f e r  from the severe channeling shown i n  

Figures 5 and 6 t ha t  su r face  ions w e r e  a problem on these  

oxides.  However, the da ta  i n  Figures 7 and 8 show t h a t  ha rd ly  

any channeling occurred when the  vol tage  was app l i ed  t o  

electrode B. This l eads  t o  the conclusion tha t  su r face  ions 

w e r e  n o t  causing the channeling b u t  t h a t  it w a s  due t o  polar-  

i z a t i o n  of the  phosphos i l ica te  g l a s s .  The geometry of 

electrodes A and B is  given i n  Figure 1 of Appendix B. 

I n  order  t o  understand i n s t a b i l i t y  problems due t o  t h i s  

d ipole  p o l a r i z a b i l i t y  it is  important t o  understand the 

following physics.  

1. The s h i f t  i n  f l a t  band vo l t age  due t o  

p o l a r i z a t i o n  cannot be g r e a t e r  than the vol tage  

t ha t  induces the po la r i za t ion .  Snow and 

D e a l  ( R e f .  8 and 9) found the former t o  be 

no more than 16% of  the l a t t e r .  
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2. Since only the vo l t age  across t h e  p o l a r i z a t i o n  

l a y e r  is  e f f e c t i v e  i n  inducing po la r i za t ion ,  

the th inne r  the po la r i zab le  l a y e r  i n  r e l a t i o n  

t o  the to t a l  i n s u l a t o r  l a y e r  thickness  t h e  less 

w i l l  be the  e f f e c t  of the p o l a r i z a t i o n .  

3. The amount of p o l a r i z a t i o n  i s  dependent on 

the e lectr ical  conduct iv i ty  of each of the  

l aye r s .  The electr ic  f i e l d  i n  each l a y e r  i s  

dependent, i n  the d-c case, on the  conductance 

of t h e  l a y e r s .  Since the conductance of the 

phosphorus-containing l a y e r  is much Higher than 

tha t  of an S i 0 2  l a y e r  without  phosphorus, the 

electric f i e l d  i n  the phosphorus-containing 

l a y e r  is  correspondingly lower. This, i n  tu rn ,  

causes the induced p o l a r i z a t i o n  t o  be 

correspondingly l o w e r .  
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Migration of Mobile Charge f r o m  Areas Adjacent 
t o  A r e a s  Beneath the M e t a l  

A set of experiments w i t h  the MOS c a p a c i t o r s  descr ibed i n  

t h e  F i r s t  

1. 

2. 

3 .  

In te r im Report has  demonstrated t h e  following: 

The MOS capac i to r  w i t h  t h e  high r a t i o  of perimeter 

t o  a r e a  i s  use fu l  f o r  studying t h e  migration of 

charge from regions ad jacent  t o  regions beneath 

metal  l aye r s .  

Photol i thographic  processes  have been found t o  con- 

t r i b u t e  t o  the mobile charge dens i ty  of microcir-  

c u i t s .  

S i g n i f i c a n t  d i f f e rences  e x i s t  i n  t h e  mobile ion  con- 

t e n t  of devices  prepared by two d i f f e r e n t  photo- 

l i thographic .  processes.  

Table V I  shows t h e  da t a  taken on MOS capac i to r s  t h a t  sup- 

p o r t  t h e  above s ta tements .  The resists used w e r e  Shipley AZ 

p o s i t i v e  resist and Kodak Thin Film R e s i s t  (KTFR) negat ive 

resist. The tes t  s t r u c t u r e s  are t h e  two MOS capac i to r s  des- 

c r ibed  i n  t h e  F i r s t  In te r im Report. The test  s t r u c t u r e s  w e r e  

prepared without a d i f f u s i o n  and without t h e  photol i thographic  

s t e p s  involved with making d i f f u s i o n  c u t s  or con tac t  cu t s .  

Each sample w a s  given a s h o r t  du ra t ion  e t c h  i n  buffered HF 

before  t h e  aluminum w a s  evaporated by an e l e c t r o n  beam. 
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TABLE VI 

EFFECTS OF PHOTOLITHOGRAPHY ON CHARGE DENSITY 

1011 marqes/cm2 
Mobile Mobile 

Immobile (3OOOC) (25OC) 

Capacitor, 30 x 3 0  mils 

AZ, Not Alloyed 
AZ, Alloyed 
KTFR, Not Alloyed 
KTFR, Alloyed 

2.2 0.1 0.1 
2.0 0-1 0-1 
2.2 1. 0 
2.0 0.5 0 

Capacitor with 
0.2-mil Line Widths 

AZ, Not Alloyed 
AZ, Alloyed 
KTFR, Not Alloyed 
KTFR, Alloyed 

3-4 >20* d o *  
2.0 wl5-25* 2* 
2.5 2.5 2.5 
2.0 6 .  5. 

*The C-V curves exhibit a very gradual slope 
and so the values are rough estimates. 

Both resists were stripped (with J100) at 70 to 75OC for 10 

minutes followed by an acetone spray and a water rinse. In 

each case the aluminum was etched in a PNA etch at 75OC 

followed by a water rinse. (PNA is a mixture of phosphoric, 

nitric and acetic acids) Both resists were baked prior to the 

aluminum etch at 16OoC for 45 minutes. 
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Table V I 1  shows  data from other experiments of a s i m i l a r  

nature .  These devices  w e r e  d i f f e ren t  f r o m  those i n  Table V I  

i n  that  i n  these devices  the oxide i n  the MOS c a p a c i t o r  had 

been used as a mask for  a boron d i f fus ion .  The resist used  

fo r  d e l i n e a t i n g  the aluminum w a s  Ship ley  A 2  resist. The 

aluminum w a s  evaporated w i t h  an  e l e c t r o n  gun. 

TABLE V I 1  

EFFECTS OF OXIDE TYPE ON MIGRATION OF CHARGE 
FROM AREAS ADJACENT TO AREAS BENEATH METAL 

10'' Charqes/cmL 
Mobile Mobile 

Capaci tor ,  30 x 30 m i l s  I m m o b i l e  (30OOC) (25'C) 

7000 H Thermal Si02 2.1-2.9 0.6-3.2 0.0-1.4 

5000 Vapor P la ted  Si02 
on 2000 A mermal s i 0 2  2.0-2.6 1.5-2.0 0.5-1.3 

5000 d Vapor P la ted  Si02 
on Diffused Phosphos i l ica te  
Layer on 2000 d Thermal Si02 3.0-10.8 0.0-1.0 0 

Capacitor wi th  
0.2-mil Line Widths 

7000 d Thermal Si02 2.0-3.2 -2 0 CNM" 

5000 A Vapor P la t ed  Si02 
on 2000 H Thermal Si02 2 .2-2 .8  w2 0 CNM* 

5000 A Vapor P la ted  Si02 
on Diffused Phosphos i l ica te  
Layer an 2000 d Thermal s i 0 2  3.6-6.3 0.5-1.0 0.5 

*CNM -- Can N o t  Measure 
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W e  can conclude from Table V I I :  

1. Mobile ions migrate  f r o m  regions ad jacent  t o  regions 

beneath the m e t a l  l a y e r s .  

2 .  Devices w i t h  only thermally grown oxide and devices  

having two l a y e r s  - a thermally grown l a y e r  and a vapor p l a t ed  

l a y e r  of pure S i02  - behaved s i m i l a r l y  under these tes t  condi t ions .  

3 .  The a d d i t i o n  of a l a y e r  of d i f fused  phosphorus 

between two S i 0 2  l a y e r s  serves t o  g e t t e r  mobile ions .  

4. That vapor p l a t e d  oxide overlying a phosphos i l ica te  

l a y e r  apparent ly  causes a high immobile charge dens i ty .  This 

is  a l s o  ind ica t ed  i n  the da ta  represented  i n  Table 111. 

Surface Recombination V e l o c i t i e s  

Measurements i n  a d d i t i o n  t o  those repor ted  i n  the F i r s t  

In te r im Report, w e r e  made of su r face  recombination v e l o c i t i e s .  

The measured volumes of the  su r face  recombination v e l o c i t y  

depend somewhat on the bias vol tage  on the p-n junc t ion  and 

the re fo re  we have made each measurement a t  an appl ied  b i a s  of 

both 0.5 and 5 v o l t s .  Table V I 1 1  shows our r e s u l t s  t aken  a t  

29°C on samples having a boron d i f fused  p-n junc t ion  on 

5 Q-cm n-type (111) s i l i c o n .  
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TABLE VI11 

SURFACE RFK!OMBINATION VELOCITIES 

Surface Recombination Velocity 
Sample Type (cm/sec) 

7000 H Thermally Grown Si02 
Wafer 564 
Wafer 579 

5000 A Vapor Plated Si02 
on 2000 k Thermally Grown Si02 

0.5 V 

23-27 
36 

5.0 V 

--- 
62-93 

42 37-110 

5000 H Vapor Plated Si02 on 
Phosphorus Diffused Layer on 
2000 Thermally Grown Si02 14-30 37-72 

These data indicate that the second layer oxides, either 

with or without a phosphorus diffused layer, do not seriously 

degrade the surface recombination velocity. These surface 

recombination velocity levels are fairly high in each case, 

and they could be decreased by a gettering operation. Future 

work should include similar measurements on gettered samples. 

Surface Ion Studies 

The surface ion test structure that was described in the 

First Interim Report has been utilized to collect a body of 

fundamental data to establish in detail the behavior and 
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e f f e c t s  of su r f ace  ions  on p lanar  devices.  The paper i n  

Appendix B presen t s  the r e s u l t s  of our  work. It w a s  presented 

a t  t h e  1968 S i l i c o n  I n t e r f a c e  S p e c i a l i s t s  Conference and has  

been s u b m i t t e d  t o  the IEEE Transact ions on E lec t ron  Devices 

f o r  cons ide ra t ion  f o r  pub l i ca t ion  i n  a forthcoming s p e c i a l  M I S  

i s sue .  

The work discussed i n  t h e  paper provides a s i g n i f i c a n t  

improvement i n  t h e  understanding of t h e  behavior of su r f ace  

ions i n  p lanar  devices.  The model f o r  the k i n e t i c s  of s u r -  

face ion behavior has  been extended t o  include t h e  case  

i n  which t h e  t o t a l  su r face  ion  dens i ty  i s  dependent on t h e  

su r face  p o t e n t i a l  of t h e  oxide.  W e  show t h a t  t h e  observat ion 

t h a t  a channel builds-up as t h e  square r o o t  of t i m e  does not  

n e c e s s a r i l y  i n d i c a t e  t h a t  t h e  su r face  conduct iv i ty  is t i m e  and 

vol tage  independent as earlier i n v e s t i g a t o r s  (Ref. LO, 11 and 

1 2 )  had concluded. 

Our work shows t h a t  t h e  parameter t h a t  should be used f o r  

comparing d i f f e r e n t  samples having t h e  same geometry bu t  

d i f f e r e n t  s u r f a c e  c o n d u c t i v i t i e s  i s  t h e  t i m e  dependence of t h e  

build-up of channels.  

t h e  determining f a c t o r s  f o r  whether a device develops a chan- 

Af t e r  long per iods of t i m e  under bias 

n e l  are the th ickness  and d i e l e c t r i c  cons tan t  of t h e  oxide,  

t h e  r e s i s t i v i t y  of t h e  s i l i c o n ,  t h e  app l i ed  vol tage and t h e  
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e f f e c t i v e  charge d e n s i t y  i n  t h e  oxide.  The su r face  conduct iv i ty  

inf luences  t h e  rate a t  which su r face  ions  move but  does not  

a f f e c t  t h e i r  f i n a l  d i s t r i b u t i o n .  

O u r  d a t a  shows t h a t  t h e  most s i g n i f i c a n t  v a r i a b l e  t h a t  

in f luences  t h e  k i n e t i c s  of su r f ace  ion behavior i s  t h e  ambient 

humidity. Surface ion behavior has  been observed t o  change 

d r a s t i c a l l y  i n  less than  one second due t o  changes i n  t h e  

r e l a t i v e  humidity of t h e  ambient. Depending on t h e  amount of 

humidity i n  a hermet ica l ly  sea l ed  package, su r f ace  ions can 

move f a s t e r  a t  room temperature than  a t  125OC, presumably due 

t o  d i f f e rences  i n  t h e  amount of w a t e r  adsorbed on t h e  oxide 

sur face .  On t h e  o the r  hand, on o the r  s i m i l a r  devices  tempera- 

t u r e  appears t o  have very l i t t l e  e f f e c t  on su r face  ion  behavior.  

This might suggest t h a t  a tunnel ing  mechanism i s  involved i n  

which c a r r i e r s  hop between l o c a l i z e d  i s l a n d s  on t h e  oxide s u r -  

face.  

W e  f i n d  t h a t  surface ion behavior i s  s t rong ly  dependent 

on t h e  t e s t i n g  h i s t o r y  of the device,  t h a t  i s ,  su r face  ions 

move much faster t h e  second t i m e  they are d r i f t e d  (wi th in  a 

per iod  of t e n s  of hours ) .  

W e  have found a l s o  t h a t  p o s i t i v e  su r face  ions move an 

order  of magnitude f a s t e r  than  negat ive su r face  ions.  
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The l i t e r a t u r e  shows numerous examples of  charge separa ted  

on t h e  oxide su r face  a t  t h e  region where a pn junc t ion  i n t e r c e p t s  

t h e  s i l i c o n  sur face .  From t h i s  one might i n f e r  t h a t  t h e  important 

f a c t o r  in f luenc ing  su r face  ion migrat ion i s  t h e  electric f i e l d  

s t r e n g t h  along t h e  oxide su r face  due t o  a d i f f e r e n c e  i n  p o t e n t i a l  

between two ad jacen t  metal  l i n e s  on t h e  su r face  of  the oxide.  

O n e  might expect su r f ace  charge t o  accumulate between t w o  m e t a l  

electrodes a s  shown i n  Figure 9. However, a s tudy of t h e  

physics  involved leads  one t o  b e l i e v e  t h a t  t h i s  d i s t r i b u t i o n  

is  un l ike ly  t o  occur be tween two m e t a l  e l ec t rodes .  Charge 

accumulation of t h e  type  shown would only occur i f  one of 

t h e  following condi t ions  ex is ted :  

1. 

2. 

3 .  

If t h e r e  w e r e  barriers t o  prevent t h e  accumulated 

su r face  charge from d r i f t i n g  t o  t h e  metal  where it 

i s  e f f e c t i v e l y  neu t r a l i zed .  Such b a r r i e r s  a r e  not 

known t o  e x i s t .  

During a t r a n s i e n t  s i t u a t i o n  before  a l l  t h e  mobile 

charge is  swept f r o m  t h e  region between t h e  metal  

l a y e r s .  W e  have been unsuccessful i n  our e f f o r t s  

t o  demonstrate t h i s  case.  

I f  t h e r e  is  a s teady  s ta te  s i t u a t i o n  i n  which mobile 

ions a r e  generated on the oxide su r face  and they  

d r i f t  i n  such a way as t o  e s t a b l i s h  t h e  n e t  charge 

d i s t r i b u t i o n  shown. 
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A su r face  ion  behavior model must t a k e  t h e  fol lowing i n t o  

account. Bas ica l ly ,  the n e t  su r f ace  ion  dens i ty  and t h e  vol tage  

ac ross  a th ickness  of oxide on s i l i c o n  are interdependent.  That 

is, a given n e t  charge dens i ty  e s t a b l i s h e s  a f i e l d  of a given 

s t r e n g t h  which e s t a b l i s h e s  a given vol tage  ac ross  t h e  oxide 

th ickness  and induces a given charge dens i ty  per u n i t  a r s a  i n  

t h e  s i l i c o n .  The s i l i c o n  is  p r a c t i c a l l y  an equ ipo ten t i a l  

region i f  one ignores  t h e  presence of p-n junct ions.  Even i n  

an MOS capac i to r ,  because of the formation of an  invers ion  

l aye r ,  t h e  p o t e n t i a l  can be a l t e r e d  by no more than  a f r a c t i o n  

of a v o l t .  

On t h i s  basis, then, it i s  clear t h a t  t h e  determinant of 

n e t  s u r f a c e  ion  dens i ty  i s  the su r face  p o t e n t i a l  of the oxide 

r e l a t i v e  t o  t h e  underlying s i l i c o n .  Taking t h i s  i n t o  account,  

t h e  k i n e t i c s  of su r f ace  ion  motion can be descr ibed as shown 

i n  F igure lo .  A t  t = 0 t h e  app l i ca t ion  of a negat ive vol tage  on 

t h e  m e t a l  r e l a t i v e  t o  t h e  s i l i c o n  induces a ne t  negat ive charge 

dens i ty  i n  t h e  metal  a t  t h e  oxide i n t e r f a c e  and a p o s i t i v e  

charge d e n s i t y  i n  t h e  s i l i c o n  a t  t h e  oxide in t e r f ace .  Because 

t h e  m e t a l  is  smaller i n  area than  t h e  s i l i c o n  t h e r e  are l i n e s  

of f o r c e  extending l a t e r a l l y  a t  t h e  edges of t h e  m e t a l .  This 

causes ions  t o  d r i f t  t o  develop a ne t  negat ive charge dens i ty  

on t h e  su r face  of t h e  oxide i n  regions adjacent  t o  t h e  metal. 
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( T h i s  n e t  nega t ive  charge may be due t o  a migra t ion  of m o b i l e  

nega t ive  ions  from the m e t a l  or  of mobile p o s i t i v e  ions  from 

the oxide . )  T h i s  process  of ion  migra t ion  cont inues  and the 

surface charge d e n s i t y  and the l a y e r  of n e t  charge d e n s i t y  i n  

t h e  s i l i c o n  inc rease  i n  area, extending f a r t h e r  and f a r t h e r  

away from t h e  m e t a l  u n t i l  even tua l ly  t h e  e n t i r e  t o p  su r face  of 

the oxide becomes an e q u i p o t e n t i a l  sur face .  The  t i m e  depen- 

dence of t h i s  s u r f a c e  charge migra t ion  i s  q u a n t i t a t i v e l y  des- 

c r i b e d  i n  Appendix B of t h i s  r epor t .  

T h i s  a n a l y s i s  assumes an  i n f i n i t e  supply of s u r f a c e  i o n s , t h e  

absence of p-n junc t ions  i n  the s i l i c o n  and t h a t  there are no 

o the r  m e t a l  e l e c t r o d e s  having d i f f e r e n t  p o t e n t i a l s .  These 

assumptions merely s impl i fy  the d i scuss ion  and do not  affect  

the v a l i d i t y  of the model. Any v a l i d  model for  s u r f a c e  

charge behavior  must be c o n s i s t e n t  with t h i s  model. 

The f i n a l  s teady  s t a t e  cond i t ion  i s  symmetrical so far  

as p o l a r i t i e s  of vo l t age  and charge are concerned except  t h a t ,  

depending on the p o l a r i t y  of t h e  app l i ed  vol tage  and the 

s i l i c o n  conduc t iv i ty  type,  the charge i n  t h e  s i l i c o n  may be 

i n  an accumulation l a y e r  o r  i n  dep le t ion  and inve r s ion  l aye r s .  

The d i f f e r e n c e  i s  one of exac t  l o c a t i o n  of t h e  charge i n  t h e  

s i l i c o n  and i s  not  r e l evan t  i n  t h i s  d i scuss ion  of the model 

-* 
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f o r  s u r f a c e  ion  behavior. Considering t h e  t r a n s i e n t  condi t ion,  

t h e r e  is a s l i g h t  d i f f e r e n c e  due t o  the  d i f f e rence  i n  t h e  

mobi l i ty  of the ions.  

Ambient E f f e c t s  

I n  connection with a company-sponsored program, s e n s i t i v e  

tes t  s t r u c t u r e s  w e r e  packaged i n  s e v e r a l  types  of p l a s t i c  en- 

capsulan ts  and i n  hermetic TO-5 packages t o  s tudy t h e  e f f e c t s  

of d i f f e r e n t  ambient materials. 

included samples conta in ing  seve ra l  types  of second-layer 

oxides.  

These packaged tes t  s t r u c t u r e s  

I n  t h i s  r e p o r t ,  we show t h e  r e s u l t s  taken on two insu l -  

a t o r  types:  

1. A f i r s t  l a y e r  of 7000 H of thermally grown Si02 ,  

with a second l a y e r  of 10,000 

conta in ing  vapor p l a t e d  SiO2. 

Same a s  1, with an a d d i t i o n a l  l a y e r  of  2000 i of 

vapor p l a t e d  S i O 2 .  

of phosphorus- 

2. 

These oxides  are r e f e r r e d  t o  h e r e a f t e r  a s  Type 1 and 

Type 2 oxides,  r e spec t ive ly .  

Packages involved i n  the test  include: 

1. Hermetically sea l ed  TO-5 packages. The devices  w e r e  

given a 2OO0C bake f o r  1 hour i n  a vacuum before  

they  w e r e  s ea l ed  i n  dry  (<15 ppm) N2. 

2. P las t ic  packages of two types.  
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The test structures included: 

a. MOS capacitors with high perimeter-to-area ratio, 

b. MOS transistors, 

c. Surface ion test structures, 

d. Diffused p-n junction diodes. 

These devices were aged at 75OC under an applied voltage 

of plus or minus 60 V. Voltages of both polarities were 

applied to the metal of the MOS capacitor, the gate of the 

transistor, and the metal electrode overlying the diffused 

regions of the surface ion test structure. Minus 60 V was 

always applied to the pf- region of the p-n junction. The 

electrical characteristics of these devices were then measured. 

We found that, after 242 hours at 75OC under an applied 

bias of -60 V, or after 480 hours at 75OC under an applied 

voltage of +60 V,,we found no significant change in the effec- 

tive charge density in the MOS capacitor with the high peri- 

meter-to-area ratio and no significant change in the threshold 

voltage or the transconductance of the MOS transistors. 

The aging temperature of 75OC was chosen because it was 

believed that the plastic encapsulants should not, under 

normal stress conditions, be subjected to temperatures higher 

than 125OC and because there is the possibility that plastic 

encapsulants will retain more moisture at 75OC than at 125OC. 
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our standard testing procedure for mobile ions includes 

an ion drift temperature of 300% and a drift time of 12 

minutes. If an activation energy of 32 kcal/mole (Ref. 13, 14, 

and 15) is assumed, an equivalent test at 75OC would require 

9 x lo8 minutes or 1700 years. 

the lowest reported value of 7.6 kcal/mole, the equivalent test 

would require 1000 minutes or 16.8 hours. For this reason, the 

usual test for mobile ions is impractical. A practical approach 

If the activation energy were 

for measuring surface ions in this case is to measure the total 

effective charge density in MOS capacitors after aging at 75OC 

under both positive and negative bias for the aging period. 

Significant changes were observed in three of the other 

measurements taken on the test structures - the channel 

current in the surface ion test structure, and the diode break- 

down voltage and reverse current of the p-n junction. 

Figure ll shows the measured channel currents taken on the 

surface ion test structure, at 1.5 V after minus 60 V 

was applied to electrode A for the given periods of time. 

threshold voltage on the MOS transistors with Type 1 oxides 

was 11 V and therefore the inversion voltage in regions having 

The 

the total oxide thickness of 17,000 1 would be about 18 V 

(assuming that the effective charge density in the oxide was 

not changed in the regions where there is no metal between the 
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f i r s t -  and second-layer ox ide) .  S imi l a r ly  the devices  with 

Type 2 oxides  have a th re sho ld  vol tage  of 1 3  V and an expected 

f i e l d  invers ion  vol tage  of 2 5  V a t  19,000 H. 
The d a t a  i n  F i g u r e l l c a n  be i n t e r p r e t e d  as follows: 

1. 

2. 

3 .  

D i s t i n c t i v e  d i f f e r e n c e s  are observed f o r  samples i n  

d i f f e r e n t  packages. 

The d a t a  i s  c o n s i s t e n t  with our b e l i e f  t h a t  any 

p l a s t i c  package i s  l i k e l y  t o  con ta in  a supply of 

mobile ions  capable of moving on t h e  mic roc i r cu i t  

sur face .  

The rate a t  which a p a r t i c u l a r  p l a s t i c  package re- 

leases t h e s e  ions i s  d i f f e r e n t  f o r  d i f f e r e n t  samples 

of p l a s t i c .  

The r eve r se  cu r ren t  of t h e  p-n junc t ion  diodes exhib i ted  

t h e  behavior shown i n  Figure 12and diode breakdown vol tages  

exh ib i t ed  t h e  behavior given i n  Figure 1 3 .  These t h r e e  measure- .  

ments -- t h e  channel cu r ren t  of t h e  su r face  ion test  s t r u c t u r e ,  

t h e  diode r eve r se  c u r r e n t  and t h e  diode breakdown vol tage  -- 
a r e  c o n s i s t e n t  with each o t h e r  and with t h e  model descr ibed 

below. 

A negat ive appl ied  bias w i l l  cause negat ive ions t o  move 

out  over t h e  su r face  of t h e  oxide over t h e  n-type s i l i c o n .  

These negat ive su r face  ions increase  the r eve r se  cu r ren t  of 

I 3 
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the diode. This inc rease  is e i t h e r  due t o  an invers ion  l a y e r  

which e f f e c t i v e l y  increased t h e  diode a rea  o r  t o  change i n  t h e  

su r face  p o t e n t i a l  which increases  t h e  su r face  recombination 

ve loc i ty .  Negative su r face  charge over t h e  n-type reg ion  

decreases  t h e  e lectr ic  f i e l d  i n  t h e  region where t h e  dep le t ion  

l a y e r  i n t e r c e p t s  t h e  s i l i c o n  su r face  and t h i s  increases  t h e  

diode breakdown vol tage .  

Study of E f fec t s  of Var ia t ions  i n  Phosphorus 
Content i n  Vapor Plated Oxide 

A determinat ion was made of t h e  e f f e c t s  of t h e  phosphorus 

content  i n  second-layer vapor p l a t e d  oxides .  I n  each case t h e  

f i r s t  l aye r  oxide.was 2000 i of SiQ2 thermally grown i n  d ry  O2 

a t  12OO0C and then 8000 i of S i02  was vapor p l a t ed  i n  40OoC. 

These vapor p l a t ed  l a y e r s  contained d i f f e r e n t  concentrat ions 

of phosphorus which was incorporated i n t o  t h e  oxide during t h e  

vapor p l a t i n g  process by including phosphine i n  t h e  r e a c t a n t  

gas mixture.  The percentage of phosphine i n  t h e  reactant gas 

mixture w a s  var ied from 1 t o  4%. The approximate percentage 

of phosphorus i n  t h e  l a y e r  can be obtained from Figure 2 .  

Aluminum was evaporated w i t h  e i t h e r  an e l e c t r o n  gun o r  a 

tungsten c o i l .  

The charge d e n s i t i e s  measured on MOS capac i to r s  a r e  given 

i n  Table I X .  The da ta  shows t h a t :  
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TABLE I X  

EFFECTS OF VARIATIONS I N  PHOSPHORUS CONTENT 

2 
PH3 i n  

Reactant Type of 1O1I Charqes/cm 
Mixture Metal Af te r  -25V, After  +25V, 
(Mole %) Evaporator 3OO0C,  30 min. 3OO0C, 30 m i n .  A 

Control* Electron gun +2.2 +3.3 1.1 

0 Electron gun +2.3 >+22. >2 0 

1 Electron gun +4.0 

1 Tungsten co i l  +4.0 

2 Electron gun +4.2 

3 Electron gun +4.2 

+20. 16 

>+22. >18 

+7.3 3 . 1  

-1.4 5.6 

4 Electron gun +4.7 -1.7 6.4 

4 Tungsten c o i l  +4.7 0.0 4 .7  

*Only t h e  2000 A of thermally grown oxide.  
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1. Second l a y e r  oxides made by vapor p l a t i n g  processes  

p re sen t  a number of problems t h a t  can s e r i o u s l y  

degrade mic roc i r cu i t s .  

a .  Vapor-plated Si02 conta ins  a high dens i ty  of 

mobile p o s i t i v e  ions .  

b. Trapping has  been found i n  s o m e  phosphorus- 

containing vapor p l a t ed  oxides ( the  3% and 4% 

samples).  

c. There i s  evidence t h a t  samples change with 

e i t h e r  t h e  t e s t i n g  process o r  with age alone.  

2 .  The presence of phosphorus i n  t h e  vapor p l a t e d  l a y e r  

increases  the f ixed  charge content  of the oxide.  

3 .  The l e v e l  of phosphorus content  s i g n i f i c a n t l y  inf luences  

the type and magnitude of the v a r i a b l e  charge conten t  

of t h e  oxide.  

a .  A t  l o w  phosphorus l e v e l s  some mobile charge is  

apparent ly  immobilized. 

b. A t  h igher  phosphorus l e v e l s  it would appear 

t h a t  t rapping  i s  introduced. Further  work is 

necessary t o  determine t h e  cause of t h i s  unusual 

behavior.  
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Polarization of Phosphosilicates 

When relatively thick layers of phosphosilicate are involved, 

one must be alert to the effects of polarization of the type 

described by Snow and Deal (Ref. 8 and 9 ) .  The data presented 

in Table X was taken on samples having 4% phosphine in the 

reactant gas mixture. We believe that the observed instability 

is due to polarization of the phosphosilicate layer. The 

observation that there is less instability in the samples 

made with tungsten coil evaporation than those made with electron 

gun evaporation indicates that sodium reduces the polarizability 

of phosphorus-containing oxides. This would be expected if the 

dipoles are involved in the sodium gettering. Each of these 

samples was made with a first layer of 2000 H of thermally 

grown oxide and a second layer of about 4000 fr of phosphorus- 

containing vapor plated oxide. The samples were all made at 

the same time and in the same way except that each wafer was 

scribed into two parts and one half was aluminum metalized by 

evaporation from a tungsten coil and the other half by evaporation 

with an electron gun. 
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TABLE X 

POLARIZATION O F  PHOSPHOSILICATE 

1011 aarqes /cm 2 

Type of Metal A f t e r  -12 V A f t e r  +12 V 
Sample No.  Evaporator 3OO0C, 1 2  min. 3OO0C, 1 2  min. a 

631 (Control)  * Elec t ron  gun 2.4 2 . 7  0.3 
Tungsten c o i l  2.7 30.0 27.3 

655 Elec t ron  gun 1 . 2  
Tungsten c o i l  1.9 

656 

657 

Elec t ron  gun 1 .6  
Tungsten c o i l  1.8 

Elec t ron  gun 1 . 7  
Tungsten c o i l  2 . 1  

2.5 
1 .5  1 i 

3.7 
3.4 

2.6 1.0 
3.0 

3.3 1 .6  
3 .1  

J 

1 . 2  1 
i 

1.0 1 
J 

i *Only the f irst  l a y e r  of oxide.  
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Evaluation of Oxide T e s t  Techniques 

4 
. i  

A s  t e s t i n g  of oxides  is extended t o  t h i c k e r  oxides ,  mult i -  

l e v e l  oxides and d i f f e r e n t  oxide materials, it is important t o  

recheck the adequacy of t h e  condi t ions  of vol tage  and the t i m e  

used t o  d r i f t  the e l e c t r i c a l  p r o p e r t i e s  of the oxide.  For t h i s  

reason w e  conducted a concentrated e f f o r t  t o  f a b r i c a t e  a number 

of types  of mul t i l aye r  oxides and t o  tes t  t h e m  under var ious 

condi t ions  of appl ied  d r i f t  b i a s ,  t i m e  and temperature.  The 

e n t i r e  t es t  was then  repeated w i t h  a second complete set of 

samples. 

The r e s u l t s  are summarized i n  Table X I .  Four types of 

oxides a r e  represented.  The measurements on each sample w e r e  

taken i n  the order  they  appear i n  each column i n  the Table.  

The test  condi t ions  w e r e  v a r i e d  for  the following reasons: 

1. T e s t  vo l tages  w e r e  var ied  t o  keep t h e  f i e l d  across  

each oxide more near ly  the same from sample t o  sample. 

2 .  Where phosphos i l ica te  w a s  p re sen t  the t e s t  was con- 

ducted a t  two vol tages  because p o l a r i z a t i o n  is  a 

func t ion  of vo l t age  and th i s  would provide a means 

f o r  a t  least  p a r t i a l l y  sepa ra t ing  p o l a r i z a t i o n  and 

mobile ion  effects. 
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3. Each set of drift conditions and measurements was 

repeated to establish that a sufficient time had 

been used to obtain saturation of the effects. 

The phosphosilicate was deposited from a reactant mixture 

containing 4% PH3- 

The data in Table XI supports the following interpretive 

comments relative to vapor deposited Si02 and phosphosilicate 

dielectric layers over pure thermally grown Si02. 

1. In most cases, the test conditions are sufficient to 

saturate the shift in the charge density. 

2. Vapor plated Si02 layers in some cases exhibit poor 

reproducibility from sample to sample. This is at 

least partly due to a nonrepeatability of measurements 

on a single sample. 

3. The addition of phosphosilicate layers can improve 

the stability and reproducibility of dielectric layers. 

4. The apparent effect of the drift voltage on the mobile 

charge density is not understood. 

Results of a Matrix Experiment Involving Variations in Phos- 
phorus Content, Annealing, Sodium Content and the Drift Voltage 

A set of data was collected to evaluate the effects of 

phosphorus in vapor plated oxides and of a heat treatment at 
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' the end of the  vapor d e p o s i t i  

50 

es n the lectrical  

p r o p e r t i e s  of t he  oxide-s i l icon  i n t e r f a c e .  I n  each sample 

t h e  f irst  oxide i s  2000 of thermally grown oxide.  The second 

oxide w a s  vapor p l a t e d  t o  a th ickness  of 4500 A .  

these vapor p l a t e d  oxides contained phosphorus and h a l f  d i d  

no t .  Half w e r e  removed from the oxide vapor p l a t i n g  apparatus  

w h i l e  the reactants w e r e  s t i l l  flowing, whereas h a l f  (referred 

t o  as "annealed" i n  Table X I I )  w e r e  l e f t  i n  the apparatus  i n  

d ry  N2 f o r  t e n  minutes a f t e r  the r e a c t a n t s  w e r e  turned o f f .  

The aluminum meta l i za t ion  f o r  h a l f  of the dev ices  was evaporated 

w i t h  a tungsten c o i l :  f o r  the o the r  h a l f  w i t h  an e l e c t r o n  gun. 

The  charge d e n s i t i e s  w e r e  measured i n  MOS capac i to r s  a f te r  the 

d r i f t  vo l tage  w a s  appl ied  f o r  1 2  minutes a t  3OO0C. The measure- 

ments w e r e  taken i n  the following sequence: 

Ha l f  of 

1. The -25 V measurement was taken on every device: 

2 .  Then h a l f  w e r e  measured a t  -12 V and h a l f  a t  +12 V; 

3 .  Then the s a m e  devices  t h a t  w e r e  measured a t  -12 V 

w e r e  measured a t  -36  V, and those t h a t  w e r e  measured 

a t  +12 V w e r e  measured a t  +36 V. 

The r e s u l t s  of the above measurements a r e  summarized i n  

Table X I I .  The r e s u l t s  permit the following i n t e r p r e t i v e  

comments : 
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1. The phosphorus greatly reduces the mobile charge 

content in the oxide, including both mobile ions 

from the vapor plated oxide and from the coil eva- 

poration. 

The anneal in N2 decreases the immobile charge density 2. 

(the effective charge following a drift under negative 

bias). This may be due to a removal of moisture from 

the oxide. 

TECHNIQUES FOR FACILITATING THE PRODUCTION 
OF RELIABLE MICROCIRCUITS 

In this section, we present our current understanding of 

the most practical approach now possible for building the 

maximum reliability into the semiconductor and insulator parts 

of large-scale multilevel integrated circuitry consistent with 

a realistic consideration of the costs. We base this presentation 

on: 

1. A familiarity with the work of other investigators 

as reported in the printed literature (Ref. 1) and 

at the technical meetings: 

2. The results of our experimental efforts reported in 

this report and in the First Interim Report. 

1 
3 

.I 
i 
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3 .  A comprehensive review of the current state of the 

relevant knowledge, an attempt to predict the most 

practical approach to maintaining and controlling 

microcircuit reliability in the design and fabri- 

cation stages, and attempts to uncover the areas 

that require further work. 

Fundamentally, stable devices can be created in two ways. 

One way is to develop techniques and materials that yield 

devices containing few mobile ions. A second way is to design 

and build devices in such a way that a fairly large change 

in charge distribution can occur without causing large changes 

in the electrical characteristics of the devices. In either 

case, a prerequisite for the development, demonstration and 

production of reliable devices is the availability of practical 

test structures, equipment and techniques for measuring and 

characterizing the basic electrical parameters of the oxide 

layer and the oxide-silicon interface. 

The reason that the emphasis is on the properties of the 

oxide layers and its surfaces and interfaces can be described 

as follows. A given change of the electric charge distribution, 

such as the ionization of a state or the migration of a charge, 

has a more significant influence in regions (the insulator and 

the semiconductor regions) where the density of mobile charge 

carriers is low. 
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Therefore, the first step to more reliable microcircuitry 

involves the creation of sensitive means for evaluating the 

electrical properties of insulator layers and of their surfaces 

and interfaces. A good basic set of test structures, measuring 

equipment and evaluation techniques for evaluating these elec- 

trical properties must include a capability to measure: 

1. The surface potential of the semiconductor; 

2. The stability of this surface potential over a period 

of time, under 

and of ambient 

3 .  The density of 

changing their 

definite conditions of applied voltage 

temperature and composition. 

various types of states capable of 

state of charge. This general category 

includes the surface recombination velocity. 

4. The mobility of.carriers in the inversion layers. 

Figure 14 of the First Interim Report describes a 

single 3 0  x 30 mil test structure chip, which contains: 

(1) a large area MOS capacitor to measure surface 

potential under the metal; ( 2 )  an MOS capacitor with a high 

ratio of periphery to area to measure changes in the surface 

potential beneath a metal layer due to the migration of 

contaminants from regions adjacent to regions beneath a metal 

layer;(3) a surface ion test structure to measure changes in 

surface potential (as evidenced by the developments of channels) 
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Figure 14. T e s t  s t r u c t u r e  chip.  
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due t o  i o n i c  migra t ion  on the oxide s u r f a c e , ( 4 )  a s t r u c t u r e  

for measuring s u r f a c e  recombination v e l o c i t y  by the technique 

descr ibed  by Grove & F i t z g e r a l d  ( R e f .  16),(5) a s t r u c t u r e  for  

measuring the H a l l  mob i l i t y  of carriers i n  a n  inve r s ion  l a y e r ,  

(6) an  MOS t r a n s i s t o r ,  and(7)  a junc t ion  diode.  

Since the w r i t i n g  of the  F i r s t  In t e r im  Report w e  have 

developed better measuring procedures f o r  these t e s t  s t r u c t u r e s  

and have conceived some ideas concerning tes t  s t r u c t u r e s  t h a t  might 

be made i n  the f u t u r e .  Based on th i s  accumulated experience 

w e  d i s c u s s  b e l o w  t he  fol lowing ques t ions  concerning test  s t r u c t u r e s  

f o r  eva lua t ing  insulator-semiconductor su r faces :  

1. 

2. 

3 .  

4. 

How does one m o s t  e f f e c t i v e l y  use  the  p r e s e n t  tes t  

s t r u c t u r e s ?  

How could the  pr>esent se t  of tes t  s t r u c t u r e s  be improved? 

How should tes t  s t r u c t u r e s  be used for  process  c o n t r o l  

and for  ana lyses  of y ie ld  and s t a b i l i t y  problems? 

How can tes t  s t r u c t u r e s  be used i n  a product ion ope ra t ion  

t o  fabricate reliable L S I  c i r c u i t r y ?  

E f f e c t i v e  U s e  of m i s t i n g  T e s t  S t r u c t u r e s  

The e x i s t i n g  tes t  s t r u c t u r e s  can be m o s t  e f f e c t i v e l y  used 

as f o l l o w s :  
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Large Area MOS Capacitors. - Capacitance-voltage (C-V) measure- 

ments of MOS capacitors are very useful for simple and rapid 

evaluations of the effective charge density in insulator layers 

on semiconductors. 

Insofar as the circuit performance and stability are 

concerned, the important information is the range of the flat- 

band voltage. The variation within this range is a measure 

of the stability of the effective charge density in the oxide, 

and the absolute value is a measure of the inversion voltage 

level. It is useful in many cases to separate more definitely 

the types of charge existing in a given sample. This can be 

done by studying the effects of temperature and voltage on 

the effective charge density. 

We typically separate fixed charge and variable charge by 

measuring the effective charge density after subjecting the 

capacitors to *12 V (for oxide thickness of 5x2000 % )  for 12 

minutes at 300OC. 

that all of the mobile ionic charge is positive. On this basis, 

we assume that the charge density after a negative applied 

bias is the fixed charge density, and the shift in effective 

charge density under the positive applied bias is due to positive 

A substantial body of evidence indicates 
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mobile ions .  

v a l i d  f o r  simple l a y e r s  of thermally grown oxide.  On the o the r  

hand, i f  phosphos i l ica te  l a y e r s  are present ,  they p o l a r i z e  i n  

either p o l a r i t y  and the t r u e  f ixed  charge would be a value 

These assumptions and conclusions a r e  probably 

approximately midway between the two extremes. 

present ,  one could t e l l  l i t t l e  about a t r u e  f ixed  charge dens i ty .  

I f  t rapping  w e r e  

I n  many cases ,  it is l i k e l y  t h a t  some combination of  

t rapping  and f ixed  charge and, i n  the case of phosphos i l ica te  

l a y e r s ,  p o l a r i z a t i o n  i s  p resen t .  These var ious types of charge 

would be d i f f i c u l t  t o  s epa ra t e  completely b u t  their  ex i s t ence  

can be c l e a r l y  demonstrated and they can be p a r t i a l l y  d i s t i n -  

guished by measuring the same oxide under d i f f e r e n t  condi t ions 

of appl ied b i a s  and temperature.  

Mobile charge should. move t o  the same sa tu ra t ed  e f fec t ive  

charge l e v e l  independently of the appl ied vol tage .  The change 

i n  f la tband vol tage  due t o  mobile charge can be g r e a t e r  than 

the vol tage appl ied  t o  induce the change i n  f la tband  vol tages .  

On the o the r  hand, p o l a r i z a t i o n  of a phosphos i l ica te  l aye r  

would be propor t iona l  t o  the appl ied  po la r i z ing  f i e l d ,  and the 

change i n  f la tband  vol tage  can be no h igher  than the appl ied 

vol tage  t h a t  induces the p o l a r i z a t i o n .  

The p o l a r i t y  of the s h i f t  i n  f la tband vol tage is  the  

same f o r  mobile ions  and po la r i za t ion :  appl ied  p o s i t i v e  vol tage  
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on the metal shifts the flat band voltage to more negative values. 

Trapping can be distinguished from polarization and mobile ions 

because the polarity of its shift is of the opposite type; i .e . ,  

an applied positive voltage'to the metal causes the flatband 

voltage to shift in the positive (algebraically) direction. 

The effect of voltage on trapping is unknown because the 

exact distribution of traps (both in space and in the energy 

diagram) is unknown. 

Temperature would be expected to affect the measurement 

of variable charge as follows. Snow and Deal report that the 

activation energy for polarization of phosphosilicates is 1 eV 

as shown in Figure 6 of Ref. 8. Activation energies for mobile 

charge range from 0.3 to 1.4 eV. The activation energy for 

trapping is not known. 

MOS Capacitors With a Hiqh Perimeter to Area Ratio. - The 

simplicity and utility of the MOS capacitor can also be used 

to study instability due to contaminating mobile ions from a 

second insulator layer (e.g., vapor plated or r-f sputtered 

SiOa) that migrate from areas adjacent to areas beneath metal 

layers. 

having short gate lengths, high P/A capacitors are easier to 

make since they require no diffusion or alignment. 

Although similar data might be taken on MOS transistors 
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MOS Transistor. - MOS transistors are very useful test structures. 

Simple measurements of the threshold voltage and transconductance 

yield information concerning trapping and the mobility of 

carriers in the inversion layer. Trapping is determined by 

a comparison of the voltage required to conduct current in 

the inversion layer of the MOS transistor and the voltage 

required to create the inversion layer in the MOS capacitor. 

The mobility of the carriers in the inversion layer can be 

calculated from the transconductance of the MOS transistor. 

Surface Ion Test Structure. - The surface ion test structure 
provides a good measure of the behavior and effects of surface 

ions on device performance and stability. The surface ion test 

structure is described in the paper in Appendix B. 

One cf 

permits one 

instability 

channeling, 

acteristics 

the advantages of this test structure is that it 

to measure the degree to which surface ions cause 

problems in microcircuits. These problems include 

effects on diode characteristics and on the char- 

of lateral bipolar transistors. While our measure- 

ments were concentrated on channeling, the test structure 

could be used to study the effects of surface ions on diode 

characteristics of lateral bipolar transistor behavior. 
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Fur ther ,  t h i s  t es t  s t r u c t u r e  does no t  r e q u i r e  the complex 

experimentat ion of the v i b r a t i n g  reed  electrometer used by 

Shockley e t  a l .  (Ref. 10 and 11) or even the capac i tance  measure- 

ments used by Snow ( R e f .  1 2 ) .  Some might a rgue  that  a d i r e c t  

measurement of s u r f a c e  conduc t iv i ty  would provide a more funda- 

mental measurement. I n  r e p l y ,  one can a rgue  tha t  it is p o s s i b l e  

t o  o b t a i n  a lneasure of s u r f a c e  conduc t iv i ty  f r o m  our  t e s t  

s t r u c t u r e  and w i t h  much less concern about  p a r a l l e l  conducting 

pa ths  over  package or  micromanipulator su r faces .  D i r e c t  

s u r f a c e  conduc t iv i ty  measurements are d i f f i c u l t  and r e q u i r e  

much larger ch ip  areas than  do measurements on t h e  s u r f a c e  ion  

t e s t  s t r u c t u r e .  Furthermore, i f  t h e  ope ra t ing  vol tages  a r e  

s u f f i c i e n t l y  h igh  t o  in f luence  t h e  s u r f a c e  charge d e n s i t y  and 

s u r f a c e  conduct iv i ty ,  a simple measurement of s u r f a c e  conduc t iv i ty  

might be hard t o  re la te  t o  an  a c t u a l  device  problem. 

The s u r f a c e  ion  tes t  s t r u c t u r e  is very u s e f u l  today f o r  

s tudying m i c r o c i r c u i t  s t a b i l i t y  problems. It w i l l  become even 

more u s e f u l  a s  the problem of mobile ions  i n  the i n t e r i o r  of 

t h e  oxide are solved.  P l a s t i c  packages, which decrease t h e  

c o s t  o f  mic roc i r cu i t s ,  i nc rease  the problems of s u r f a c e  ions  

and t h e r e f o r e  i n c r e a s e  the need for good s u r f a c e  i o n  test  

s t r u c t u r e s .  

The s u r f a c e  ion  tes t  s t r u c t u r e  could a l so  be used as  a l a t e r a l  

b i p o l a r  t r a n s i s t o r  t o  s tudy effects on s u r f a c e  recombination. 
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Junction Diode. - Measurements of reverse currents and breakdown 

voltages of diffused p-n junction diodes have been and are 

a very useful and sensitive means for detecting and studying 

instability due to either mobile ions on the insulator surface 

or in the interior of the insulator. 

Surface Recombination Velocity Test Structure. - Grove and 

Fitzgerald (Ref. 16) have described a useful technique for 

measuring surface recombination velocity. The measurement 

of surface recombination velocity could play an important 

role in efforts to develop circuits designed to operate at 

lower power levels, or circuits containing lateral bipolar 

transistors. Degradation modes involving bipolar transistor 

action between regions not designed to be transistors, such as, 

for example, between a diffused resistor and an isolation 

region, might also be studied with surface recombination 

velocity measurements. 

Inversion Layer Hall Measurement Test Structure. - To date, 
the capability to make Hall measurements on inversion layers 

in small areas has not been found to be especially advantageous 

for studying failure or stability problems. The measurement 

is fairly complex, and without a nonmagnetic package the mounting 

and handling of the device is quite awkward. A l s o ,  there is little 

evidence to suggest that the mobility of carriers in the inversion 

-1 
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l a y e r  is a t  t h i s  t i m e  an  important  factor i n  degrading c i r c u i t  

s t a b i l i t y .  

General Statements Pe r t a in ing  t o  T e s t  S t r u c t u r e s .  - Having 

developed a n  understanding of the u t i l i t y  and the l i m i t a t i o n s  

of  each of the e x i s t i n g  t es t  s t r u c t u r e s ,  one should choose 

the tes t  s t r u c t u r e s  t o  be used i n  a p a r t i c u l a r  experimental  

e f f o r t  w i t h  t h e  expected problem areas i n  mind. For example, 

a new i n s u l a t o r  mater ia l  o r  process  should be eva lua ted  f irst  

on s imple large-area MOS c a p a c i t o r s .  The effects of p l a s t i c  

coa t ings  or  encapsula t ion  would be much m o r e  l i k e l y  t o  be 

found by measuring t h e  r e v e r s e  c u r r e n t  and the breakdown 

vo l t age  of  t h e  p-n junc t ion  diode, t h e  channel c u r r e n t  of the 

s u r f a c e  i o n  t es t  s t r u c t u r e  and, perhaps,  the f l a tband  vo l t age  

of the h igh  P/A MOS c a p a c i t o r .  

Improved T e s t  S t r u c t u r e s  

Having t h e  b e n e f i t  of t h e  experience f r o m  developing the 

f i r s t  set of t es t  s t r u c t u r e s ,  the following improvements could 

be suggested: 

1. The large-area MOS capac i to r  could be reduced i n  

s i z e  by a t  l e a s t  50% so as t o  conserve ch ip  area, 

2. More e f f i c i e n t  use  could be made of t h e  ch ip  area 

by reducing the spacing between tes t  p a t t e r n s  and 

us ing  common expanded con tac t s  f o r  m o r e  than  one 
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t e s t  s t r u c t u r e .  

3 .  A l a t e r a l  b i p o l a r  t r a n s i s t o r  without  an overlying 

metal  p l a t e  (such a s  t h a t  of t h e  g a t e  of  the MOS 

t r a n s i s t o r )  could be added. 

4. A s u r f a c e  i o n  t es t  s t r u c t u r e  could be added having 

a geometry which is  more e f f e c t i v e  w'th samples having 

a b u i l t - i n  invers ion  l a y e r .  

5. An e x t r a  mask could be added t o  t h e  set t o  form 

an overlying m e t a l  f i e l d  p l a t e  over t h e  tes t  

s t r u c t u r e s  t o  provide a barrier t o  mobile ions  

from t h e  ou te r  i n s u l a t o r  l a y e r s  o r  from t h e  ambien t ,  

t o  prevent t h e  e f f e c t s  of su r f ace  ions,  and t o  deter- 

mine whether mobile ions a t  an in su la to r - in su la to r  

i n t e r f a c e  can migrate l a t e r a l l y  t o  inf luence  d e v i c e  

s t a b i l i t y  . 

The U s e  of T e s t  S t ruc tu res  for Process Control 
and f o r  Analyses of Yield and S t a b i l i t y  Problems 

A s  mic roc i r cu i t ry  i s  made more and more complex, t h e r e  

is  a g r e a t e r  need f o r  d i s c r e t e  t e s t  s t r u c t u r e s  f o r  a n a l y t i c  

and con t ro l  purposes. 

T e s t  s t r u c t u r e s  can be used i n  connection with micro- 

c i r c u i t  (of a l l  l e v e l s  of complexity) production processes 

i n  a t  least  t h r e e  ways a s  descr ibed below. 
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T e s t  S t r u c t u r e s  on Each Chip. 

can i n  many cases be designed 

mic roc i r cu i t  ch ip  should have 

type  which i s  included i n  t h e  

- A few small-area tes t  s t r u c t u r e s  

onto each chip.  Each complex 

a discrete device of each p r i n c i p l e  

c i r c u i t .  

Philco-Ford uses  t h i s  technique i n  the production of 

some MOS microc i r cu i t s .  Each ch ip  has  t w o  d i s c r e t e  MOS t r a n s i s t o r s  

- one wi th  an oxide under t h e  g a t e  l i k e  t h a t  under t h e  g a t e s  

of the t r a n s i s t o r s  i n  t h e  c i r c u i t  and one with an oxide l i k e  

t h a t  i n  the f i e l d  between the elements  of t h e  c i r c u i t .  These 

devices  provide a c a p a b i l i t y  t o  measure the  threshold  vol tage  

and transconductance of the t r a n s i s t o r s ,  t h e  f i e l d  invers ion  

vol tage  (a measure of how e a s i l y  c i rcui t -degrading channels 

can develop) and diode c h a r a c t e r i s t i c s .  

Complex b i p o l a r  c i r c u i t s  should include discrete b i p o l a r  

t r a n s i s t o r s  on each ch ip  t o  provide a s i m i l a r  monitoring 

c a p a b i l i t y .  

Each chip,  of e i t h e r  NOS o r  b i p o l a r  type  c i r c u i t r y ,  

should conta in  a su r face  ion  t e s t  p a t t e r n .  

With a l i t t l e  ingenuity,  one might combine a discrete 

MOS t r a n s i s t o r  and a su r face  ion tes t  s t r u c t u r e  i n t o  a s i n g l e  

simple device.  This combined tes t  device might be designed 

as a simple MOS t r a n s i s t o r  i n  which the g a t e  covers only 

of t he  width of the channel formed by the source and the 
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MOS capac i to r s  are gene ra l ly  no t  p r a c t i c a l  on each ch ip  

because they t a k e  up a f a i r l y  l a r g e  a r e a .  For example, t o  

have a capaci tance of  only 5 pF on a 5000 B t h i c k  oxide,  t h e  

a r e a  would have t o  be 115 m i l s 2 .  

I n  some cases ,  a d d i t i o n a l  pads t o  those  needed f o r  t h e  

s tandard c i r c u i t  could be added t o  permit d i s c r e t e  device 

t e s t i n g  of some of t h e  c i r c u i t  devices .  

I n  t h e  case of c i r c u i t s  having more than  one i n s u l a t o r  

l e v e l ,  t h e  mask set  should be designed t o  provide a means f o r  

measuring t h e  th ickness  of each i n s u l a t o r  l e v e l .  This is most 

conveniently accomplished by using masks designed t o  leave,  i n  

t h e  f in i shed  chip,  regions with only one l a y e r  of i n s u l a t o r  of 

each type.  To make t h e  thickness  of each of t hese  regions easy 

t o  measure, they should be adjacent  t o  a region of ba re  s i l i c o n .  

The s c r i b i n g  region is  bare s i l i c o n .  

T e s t  S t ruc tu res  Formed by Modification of Standard Meta l iza t ion  

Pa t t e rn .  - T e s t  s t r u c t u r e s  can be formed on s tandard micro- 

c i r c u i t  chips  by changing t h e  me ta l i za t ion  p a t t e r n .  

For example, a d i f fused  r e s i s t o r  and an  i s o l a t i o n  region 

i n  a b i p o l a r  mic roc i r cu i t  can be used a s  source and d r a i n  

regions of an MOS t r a n s i s t o r  when a metal  g a t e  i s  provided 

across t h e s e  regions.  This provides a means f o r  measuring 

threshold  vol tage  which provides a measure of the e f f e c t i v e  
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charge d e n s i t y  on t h e  oxide i n  a smaller area than  would be 

needed for  a n  MOS capac i to r .  The same s t r u c t u r e  can a l so  

be convenient ly  used t o  measure s u r f a c e  ion  effects. 

This technique can be improved by making s l i g h t  changes i n  

t h e  d i f f u s i o n  p a t t e r n s  under t h e  m e t a l  p a t t e r n .  

appear on every ch ip ,  whi le  those i n  t h e  m e t a l  p a t t e r n  appear 

These changes 

only  on t h e  t es t  s t r u c t u r e  ch ips .  N o t e  t h a t  row-on-row, o r  

column-on-column, alignment is  n o t  needed i n  t h i s  case. 

Philco-Ford i s  p r e s e n t l y  us ing  t h i s  technique on m i c r o c i r c u i t s  

i n  product ion.  

Threshold o r  i nve r s ion  vol tages  on a given oxide th i ckness  

a r e  f r equen t ly  d i f f e r e n t  i n  areas beneath a metal  l a y e r  and i n  

ad jacen t  areas not  covered by m e t a l .  One might be able t o  measure 

inve r s ion  vol tages  i n  reg ions  no t  covered by m e t a l  by measuring 

t h e  minimum vo l t age  t h a t  i s  requi red  on t h e  m e t a l  t o  produce 

s i g n i f i c a n t  i nc reases  i n  channel c u r r e n t  i n  s t r u c t u r e s  designed 

t o  s tudy  s u r f a c e  ions .  

O f  course,  as  t h e  number of l e v e l s  of m e t a l  and i n s u l a t o r  

i nc reases ,  t he  number of t e s t  s t r u c t u r e s  should be increased .  

For example, whenever an  a d d i t i o n a l  l a y e r  of m e t a l  i s  designed 

i n t o  a m u l t i l e v e l  i n s u l a t o r  m i c r o c i r c u i t  s t r u c t u r e ,  it permi ts  

one t o  t e s t  the f l a t b a n d  vo l t age  or the inve r s ion  vo l t age  on 

each type  of reg ion  i n  t h e  ch ip  wi th  metal located a t  an  a d d i t i o n a l  

l e v e l .  This provides  a means f o r  eva lua t ing  t h e  effects of 

both f i r s t  l a y e r  and second l a y e r  i n s u l a t o r s  on the s a m e  type  

of underlying s i l i c o n .  
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Other 

to measure 

test patterns should also be included on each wafer 

properties other than electrical properties, for 

of types 

1. 

2. 

3 .  

example, pinhole densities, dielectric strength, dielectric 

constant and loss factor. 

scope of the present program. 

Universal Test Structure Chip. - A universal test structure 

chip that can be included on the wafer for a large variety 

These test patterns are beyond the 

of microcircuits provides the following advantages: 

It can easily be included on the wafer with micro- 

circuits of many kinds. 

Standard techniques can be developed for mounting 

and testing these test structures. 

Information taken from test structures made with 

one microcircuit process can be more easily compared 

with information taken from test structures made 

with another process. 

Test Structures for Use in 

We suggest the following as a good 

Production 

practical way to use 

test structures to improve the reliability and performance of 

production quantities of complex LSI circuits. 

1. Within the limits of practicality, discrete test 

structures should be included on each chip to permit 

determination of the exact nature of performance, 

yield and stability problems. 
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2. 

3 .  

4. 

Severa l  ch ips  on each wafer should have a m e t a l i z a t i o n  

p a t t e r n  t h a t  permi ts  the measurement of d i s c r e t e  

t r a n s i s t o r s  i n  t h e  ch ip .  

Severa l  ch ips  i n  the w a f e r  should have a set of  t es t  

s t r u c t u r e s  t ha t  permit  the measurement of the funda- 

mental electrical  p r o p e r t i e s  of t h e  oxide-s i l icon  

i n t e r f a c e .  

The R&D and product  development groups t h a t  provide 

fundamental t e c h n i c a l  support  t o  product ion should 

have a c a p a b i l i t y  t o  b u i l d  t h e  test s t r u c t u r e s ,  t o  

develop a good understanding of the effects of v a r i -  

a t i o n s  on m a t e r i a l s  and processes  on t h e  c h a r a c t e r i s t i c s  

measured on t h e  tes t  s t r u c t u r e s  and t o  correlate t h i s  

fundamental knowledge wi th  t h e  t e s t i n g  d a t a  of pro- 

duc t ion  c i r c u i t s .  

The a v a i l a b i l i t y  of appropr i a t e  tes t  s t r u c t u r e s ,  tes t  

equipment and procedures is  a necessary b u t  no t  a s u f f i c i e n t  

cond i t ion  fo r  the success fu l  product ion of re l iable  m i c r o -  

c i r c u i t s .  The t es t  s t r u c t u r e s  must be used d i l i g e n t l y  and 

i n t e l l i g e n t l y .  I t  is  important tha t  those  persons us ing  t h e  

tes t  s t r u c t u r e s  c l e a r l y  understand t h e  purpose and the l i m i t -  

a t i o n s  of each tes t .  Hopeful ly , the r e p o r t s  on t h i s  program 

can be used t o  develop such understanding. It is  important 

t h a t  the nunber of samples undergoing t e s t i n g  is  chosen so 
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t h a t  t he  r e s u l t s  a.re s t a t i s t i c a l l y  v a l i d  and proper ly  repre-  

s e n t a t i v e  of t h e  devices  t h a t  are being produced. It is  

important t h a t  i r r e l e v a n t  measurements and tests be avoided: 

f o r  example, t h e r e  i s  l i t t l e  t o  be gained by measuring large- 

a r e a  MOS capac i to r s  t o  s tudy a problem of contamination from 

sources  of ions,  such a s  p l a s t i c  coa t ings  o r  encapsulants ,  t h a t  

would not  be expected t o  contaminate regions beneath t h e  metal  

l aye r s .  

F i n a l l y ,  t h e  eva lua t ion  of i n s t a b i l i t y  i n  tes t  s t r u c t u r e s  

should be performed on a t i m e  s c a l e ,  a t  appl ied  vol tages  and i n  

ambient temperatures and humidi t ies  t h a t  a r e  l i k e  those  t o  w h i c h  

t h e  product devices  may be subjec ted .  Care must be taken i n  

t h e  design of acce le ra t ed  tests. Surface ion  effects have 

been observed t o  proceed a t  a slower r a t e  a t  125OC than a t  

room temperature,presumably because there can be less adsorbed 

su r face  moisture a t  the  h igher  temperature.  Surface ion  e f f e c t s  

can a l s o  be acce le ra t ed  by increas ing  t h e  appl ied  vol tage ,  bu t  

it i s  important t o  recognize t h a t ,  t h e o r e t i c a l l y ,  given a supply 

of su r face  ions  and a s u f f i c i e n t l y  high vol tage  on a given 

oxide l aye r ,  almost any s i l i c o n  su r face  can be i n v e r t e d .  There 

is l i t t l e  t o  be gained by increas ing  t h e  vol tage  t o  a l e v e l  

much h igher  than t h a t  t o  w h i c h  the a c t u a l  device can be expected 

t o  be subjected.  
i 
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Improved Reliability by Improvements 
In Device and Process Designs 

From the results of the work reported to date on this 

program, we conclude that the following steps associated with 

device and process design lead to reliable microcircuitry. 

1. 

2. 

3 .  

Minimize contamination, especially sodium, at all 

steps in the fabrication process. This is most 

important for MOS integrated circuits. 

Minimize the moisture content on the outer surface 

of the microcircuit. 

Include a phosphorus-containing layer in the oxide 

layer to getter mobile ions in the oxide. This can 

be done by diffusion at high temperatures when this 

is compatible with the rest of the fabrication process 

or it can be done in a low-temperature vapor plating 

process. 

Insulator layers with a capability to 

ions (phosphosilicates) from adjacent 

getter mobile 

regions provide 

more positive stability than layers (such as aluminum 

oxide) that are merely impervious to sodium ions. 

For example, a thin barrier layer will not provide 

stability if ions migrate in the insulator layer 

outside of the barrier layer. 
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4.  U s e  c o n t r o l s  t o  i n s u r e  t h a t  t h e  proper  amount of 

phosphorus i s  p r e s e n t  i n  the f i n i s h e d  devices  t o  

a s s u r e  the d e s i r e d  r e s u l t s  and t h a t  t h i s  amount i s  

be ing  reproduced. 

5 .  Design the process  t o  provide a n e t  charge d e n s i t y  

i n  t h e  oxide t h a t  makes t h e  c i r c u i t  m o s t  t o l e r a n t  

of t h e  e f f e c t s  of mobile charge.  

6.  Avoid t h e  use  of  processes ,  materials and s t r u c t u r a l  

des igns  t h a t  y i e l d  r e s u l t s  t h a t  are  d i f f i c u l t  t o  

reproduce. 

7 .  Build t h e  device  wi th  an  oxide  of s u f f i c i e n t  t h i ckness  

t h a t  t h e  inve r s ion  vol tage  is h igher  than  t h e  ope ra t ing  

vol tages  of t h e  device.  

8. Inc lude  i n  the processing s p e c i f i c a t i o n s  a s p e c i f i e d  

a l l o w a b l e  range on the e f f e c t i v e  charge d e n s i t y  i n  

oxide  l a y e r s  a t  p a r t i c u l a r  p o i n t s  i n  the mic roc i r cu i t ,  

j u s t  as l i f e t i m e ,  r e s i s t i v i t y  and o t h e r  parameters 

are now s p e c i f i e d  f o r  the s i l i c o n .  

9. To minimize s u r f a c e  ion  problems, t h e  design r u l e s  

should fo rb id  areas having th inne r  oxides  i n  regions 

no t  covered by m e t a l  than  t h e  oxides i n  nearby regions 

covered by m e t a l .  Visual  inspec t ion  should be used t o  

i n s u r e  t h a t  t h i s  condi t ion  does no t  occur due t o  

misalignment. 

... 
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CONCLUSIONS 

A good understanding has  been developed of t h e  fundamental 

electrical  p r o p e r t i e s  of t h e  Si-Si02 i n t e r f a c e  i n  s t r u c t u r e s  

having two o r  more d i e l e c t r i c  l a y e r s  on s i l i c o n .  This under- 

s tanding  w i l l  improve t h e  c a p a b i l i t y  t o  b u i l d  large scale 

i n t e g r a t e d  c i r c u i t r l -  f l i th  high y i e l d  and r e l i a b i l i t y  a t  a rela- 

t i v e l y  low c o s t .  

Spec i f i ca l ly ,  conclusions include t h e  following: 

1. 

2. 

3.  

Vapor p l a t e d  Sio2 (deposi ted a t  40OoC) i s  t h e  most 

promising second-layer oxide ma te r i a l ,  of those 

s tud ied  i n  t h i s  program. However, f u r t h e r  work i s  

necessary t o  e s t a b l i s h  t h e  causes of v a r i a t i o n  i n  

both t h e  f i x e d  and mobile charge dens i ty  from l o t  t o  

l o t .  

The inc lus ion  of phosphorus i n  S i 0 2  vapor p la ted  a t  

4OO0C on thermally grown S i 0 2  s t a b i l i z e s  and improves 

t h e  r e p r o d u c i b i l i t y  of t h e  e l e c t r i c a l  p r o p e r t i e s  of 

t h e  oxide and of t h e  s i l icon-oxide in t e r f ace .  

The p o l a r i z a t i o n  of phosphos i l ica tes  prepared a t  

4OO0C i s  s i m i l a r  t o  t h a t  repor ted  f o r  phosphosi l icates  

made by d i f f u s i o n  a t  much higher  temperatures.  A t  
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4. 

5. 

6. 

7 .  

8. 

9. 

10. 

higher voltages on relatively thick layers of phos- 

phosilicate there might be a stability problem due to 

polarization of the phosphosilicate. 

Sodium appears to reduce the polarizability of low- 

temperature phosphosilicates. 

R-f sputtered Si02 can contain a high density of mobile 

charge. 

Vapor plated Si02-Al2O3 

amounts of ions that are mobile in underlying ther- 

mally grown S i 0  . 
Second layer oxides should be a getter for mobile 

ions. 

The deposition of a second-layer dielectric can in- 

crease or decrease the effective charge density in an 

underlying oxide layer. It is possible that a second 

layer oxide could getter mobile ions and reduce sur- 

face charge densities and migration rates but still 

degrade the stability of devices because of a change 

in the fixed charge density that causes the device to 

be more sensitive to small amounts of mobile charge. 

An MOS capacitor with a high perimeter-to-area ratio 

is useful for studying ion migration from areas adja- 

cent to areas beneath metal layers. It has been shown 

that this type of contamination can be caused by photo- 

lithographic processes. 

A very useful test structure has been developed for  

can be a source of large 

2 
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1 

11. 

1 2 .  

s tudying the k i n e t i c s  and e f f e c t s  of sv r f ace  ion  

migration. 

The  r ecogn i t ion  of su r face  ion  e f f e c t s  becomes more 

important as techniques fa minimizing t h e  d e n s i t y  

of mohile ions  i n  the i n s u l a t o r  become more e f f ec -  

t i v e  and better understood. $urface ion  effects are 

e s p e c i a l l y  important i n  samples having high resis- 

t i v i t y  s i l i c o n  and low Q s s  d e n s i t i e s  i n  t h e  oxide. 

The model f o r  the k i n e t i c s  of surface ion  migrat ion 

has  been improved and extended t o  include the s i t u -  

a t i o n  i n  which t h e  dens i ty  of su r face  ions  i s  depen- 

dent on the  su r face  p o t e n t i a l  of t h e  oxide.  

13.  Surface ion migrat ion is  slower when t h e  su-rface has  

a minimum of adsorbed moisture.  

14. Surface recombination v e l o c i t i e s  have been compared 

on samples c o n s i s t i n g  of a s i n g l e  l a y e r  of thermally 

grown oxide,  on samples cons i s t ing  of vapor p la ted  

S i 0 2  on thermally grown oxide,  and on samples con- 

s i s t i n g  of vapor p l a t e d  S i 0 2  on a phosphorus- 

d i f f u s e d  thermally grown oxide.  N o  s i g n i f i c a n t  

d i f f e r e n c e s  w e r e  found. 

15. S tudies  of t h e  effects of a junc t ion  coa t ing  and of 

p l a s t i c  encapsulat ion show tha t  t h e  main cause of 
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16. 

17. 

instability is mobile surface ions in regions adja- 

cent to the metal. Mobile ions were not found in 

the oxide. 

The most effective test structures for studying the 

effects of ambient materials are the junction diode 

and the surface ion test pattern. 

The present state of knowledge concerning tech- 

niques for building the maximum reliability in micro- 

circuits in production includes: 

a. 

b. 

C. 

d. 

The design and understanding of a useful set 

of test structures for measuring fundamental 

properties of the Si-Si02 interface. 

understanding includes a knowledge of the 

This 

advantages and disadvantages of each specific 

test structure. 

Further suggestions for improving test struc- 

tures. 

A number of specific approaches for using test 

structures for process control and for the 

analysis of LSI yield and stability problems. 

From a broader view, understanding of the most 

effective role for test structures in the 

manufacture of reliable microcircuitry. 
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RECOMMENDAT IONS 

The following objectives should be pursued in future work. 

1. The effectiveness of thicker oxide layers to reduce 

surface-ion-related instability should be determined. 

The values of A 1 2 0 3  and Ti02 as second-layer oxides 

should be established. 

2 .  

3 .  Investigations should be conducted to determine 

whether r-f sputtered Si02 can be made more stable 

by the use of purer source materials or possibly 

by the inclusion of phosphorus in the source. 

"1 
- 1  

-1 
.I 

4. The causes of nonreproducibility and instability 
. J  

of vapor plated Si02 layers should be determined. 
, 

5. The effects of second layer oxides on microcircuit 

-4 i structures having oxides modified by prior diffusions 

such as those used in the fabrication of all types 

of integrated circuits should be determined. 

6 .  The possibility that a second layer metal field plate 

can be used to stabilize LSI circuitry should be 

investigated. 

7. The effects of second layer oxides on microcircuit 

structures having (100) oriented substrates should 

be compared with those on (111) oriented substrates. 
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INSULATOR-SEMICONDUCTOR STUDIES* 

Earl S .  Schlegel, Member IEEE 
Philco-Ford Corporation 
Microelectronics Division 

ABSTRACT 

A supplementary bibliography containing 158 papers in the 

field of metal-insulator-semiconductor theory and technology 

updates the bibliography previously published in these 

transactions (ED-14, 728-749) . 
The classifications are as follows: 

MOS transistor behavior 

Physics 

Preparation of oxide layers 

Techniques for evaluating insulator layers 

Device fabrication technology 

Radiation effects 

Alternative materials to Si02 

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ c _ _ _ _ _ _ _ _ _ c _ _ 3 _  

*This bibliography has been in part supported by the Electronics 

Research Center under NASA Contract NAS12-544. 
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INSULATOR-SEMICONDUCTOR STUDIES* 

Earl S. Schlegel, Member IEEE 
Philco-Ford Corporation 

Microelectronics Division 

This bibliography has been prepared to update the bibliography 

that was published in the November 1967 special MIS issue of these 

transactions (ED-14, 728-749). 

The purpose and scope are the same as stated for the first 

bibliography. 

The papers have been classified according to the same 

groupings as those of the first bibliography. 

the information in the items of this additional bibliography. 

have not been prepared. 

Summaries of 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
*This bibliography has been in part supported by the Electronics 

Research Center under NASA Contract NAS12-544. 
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ABSTRACT 

A s tudy  of t h e  e f f e c t s  and behavior of su r face  ions  on 

p l ana r  semiconductor devices  has  extended t h e  t h e o r e t i c a l  under- 

s tanding  t o  include t h e  case i n  which the t o t a l  mobile su r face  

ion  dens i ty  is  determined by t h e  n e t  su r f ace  ion  dens i ty  induced 

by the su r face  p o t e n t i a l  on -&e oxide. W e  describe a use fu l  

tes t  s t r u c t u r e  f o r  t h e  measurement of su r face  ion  behavior and 

c i t e  i t s  advantages. W e  have measured the e f f e c t s  of t i m e ,  

humidity,  temperature,  vol tage,  and the previous t e s t i n g  h i s t o r y  

of t h e  device on t h e  behavior of  su r f ace  ions.  

INTRODUCTION 

Mobile ions on the o u t e r  su r f ace  of oxidized s i l i c o n  have 

an important in f luence  on the s t a b i l i t y  and performance of micro- 

c i r c u i t s .  

su r f ace  ions  on the c h a r a c t e r i s t i c s  of oxidized d i f fused  s i l i c o n  

I n  1959, A t a l l a  e t  a1.l repor ted  on the inf luence  of 
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junc t ions .  They observed d r i f t i n g  i n  the reverse  c u r r e n t  due t o  

the formation of  channels r e s u l t i n g  f r o m  su r f ace  ion  migration. 

They explained t h e  observed phenomena as being due t o  the d r i f t  

of ions  on the su r face  of the oxide i n  the f r i n g i n g  f i e l d  where 

the j u n c t i o n  i n t e r c e p t s  the s i l i c o n  su r face .  Shockley e t  a l .  2 , 3  

used t h e  Kelvin v i b r a t i n g  condenser t o  measure p o t e n t i a l  d i f f e r -  

ences across  t h e  oxide l a y e r  and they i n t e g r a t e d  c u r r e n t s  t o  

show that  the formation of channels and changes i n  diode charac- 

terist ics are caused by the accumulation of charge on the 

surface of the oxide.  Surface ion  effects and s e v e r a l  techniques 

fo r  minimizing t h e m  have a l s o  been discussed by Metz4, Schnable 

e t  al.', Schroen6,7, and Kang8. 

cause of i n s t a b i l i t y  i n  L S I  s t r u c t u r e s  i n  which t h e  d e n s i t i e s  of  

mobile ions  and immobile charge ( Q s s )  i n  t h e  oxide have been 

Surface ions can be an important 

minimized. 

Snowg, Shockley e t  a1.3, and Schroen7 have developed a 

theoretical a n a l y s i s  of  su r f ace  ion  motion based on an assumption 

that  the  d e n s i t y  of su r face  ions  is independent of  t i m e  and d i s -  

tance.  They der ived  the equat ion 

for which the  s o l u t i o n  is 
1 / 2  

:1 
i 
1 

a ,  I 

i 
H ,  

GI i 
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Having observed t k a t  surface--ion-induced inve r s ion  l a y e r s  formed 

i n  proport ion t o  the square r o o t  of t i m e ,  they concluded tha t  

their assumption of a cons t an t  su r f ace  r e s i s t i v i t y ,  R,, w a s  jus -  

t i f i e d .  They c a l c u l a t e d  va lues  f o r  R, from their da ta .  

I n  t h e  fol lowing d iscuss ion ,  we descr ibe  an ex tens ion  t o  

the model and cons ider  i t s  impl ica t ions .  W e  a l s o  descr ibe  a 

very  use fu l  and simple t e s t  s t r u c t u r e  tha t  w e  have used t o  ob- 

t a i n  the body of da t a  tha t  is presented  here. 

THEORY 

. I n  the previous a n a l y s i s  it w a s  assumed t h a t  the su r face  

conduc t iv i ty  i s  cons t an t  and tha t  the time-dependent behavior 

of the su r face  charge is determined by the su r face  r e s i s t i v i t y ,  

R,, and the oxide capaci tance,  Co. W e  have considered the pos- 

s i b i l i t y  tha t  the n e t  mobile ion  dens i ty  is  e s s e n t i a l l y  equal  t o  

the t o t a l  mobile i on  dens i ty  and then this t o t a l  ion  d e n s i t y  i s  

dependent on the e l e c t r o s t a t i c  p o t e n t i a l  on the sur face .  I n  t h i s  

case, the time-dependent behavior is  dependent on the i o n i c  

mobi l i ty  w h i c h  determines the i o n i c  t r a n s i t  t i m e .  

When the t o t a l  mobile i on  dens i ty  i s  a s i g n i f i c a n t  func t ion  

of the su r face  p o t e n t i a l  of t h e  oxide, it w i l l  be shown t h a t  the 

d i f f e r e n t i a l  equat ion takes the form 
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Assuming one-dimensional geometry, the  equat ion  f o r  charge 

conserva t ion  can be w r i t t e n  i n  t he  form: 

Y 
d a - - a i  - 
a t  ax 

where (J = the  n e t  charge dens i ty  per  u n i t  area,  

t = time, 

j = the  c u r r e n t  dens i ty  per  u n i t  width, 

x = the  d i s t ance .  

A n d  j = apE 

where ~ 1 .  = mobi l i ty  of the  su r face  charges,  

E = e l e c t r i c  f i e l d  along the  sur face .  

Therefore , 

da = .(alLEl_ 
a t  ax 

L e t  

(4) 

(5) 

where o0 = t o t a l  mobile su r face  charge dens i ty  a t  an oxide 

su r face  p o t e n t i a l  of 0 v o l t s  r e l a t i v e  t o  the  

underlying s i l i c o n ,  

01 = n e t  charge added t o  00 by a sur face  p o t e n t i a l  (V) 

on the  oxide, 

Ro = sur face  r e s i s t i v i t y  a t  V = 0, 

Co = capac i tance  per u n i t  a r ea  of a capac i to r  having 

the  d i e l e c t r i c  cons tan t  and thickness  of the oxide, 
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V = su r face  p o t e n t i a l  of the oxide r e l a t i v e  t o  t h e  

s i l i c o n .  

Equations ( 3 )  and (4) combine t o  y i e l d  

E+ p,CoVE a t  ax 

This can be r e w r i t t e n  a s  

and a s  

Note t h a t  when 00 >> 01, t h e  equat ion reduces t o  t h a t  used 

by Shockley e t  a1.3, Snow9, and Schroen7, i .e. ,  equat ion (1). 

On the other hand, when oo << 01, the equat ion reduces t o  

av - a2v2 
a t  2 ax2 

e 

V = Vo erfc - (&I 
This i s  the s o l u t i o n  f o r  the vo l t age  (V) d i s t r i b u t i o n  on an oxide 

su r face  over ly ing  a conducting material such as s i l i c o n ,  

metal  conductor over ly ing  the oxide. 

near  a 

The d i s t ance  from the metal  

is  x. The vo l t age  on the metal, r e l a t i v e  t o  the s i l i c o n ,  i s  Vo. 

The mobil i ty  of t h e  su r face  ions  is  p,. The t i m e  s i n c e  the v o l t -  

age on the metal  w a s  increased  f r o m  zero is  t. 

B-5 



N o t e  that  the r a t e  of growth of t he  invers ion  l a y e r  is 

propor t iona l  t o  the square root of the t i m e  i n  e i t h e r  s o l u t i o n  

[equation (2) or equat ion  (12)]. 

an inve r s ion  l a y e r  grows as the square root of t i m e  does n o t  

n e c e s s a r i l y  i n d i c a t e  t h a t  the su r face  conduct iv i ty  i s  cons tan t .  

It should be p o s s i b l e  t o  d i s t i n g u i s h  between the t w o  

condi t ions  by determining the e f f e c t  of the app l i ed  vo l t age  on 

the t i m e  dependence of the invers ion  l a y e r  build-up. I f  the 

Therefore,  an  observat ion that  

su r face  conduct iv i ty  is cons tan t ,  the t i m e  tha t  it takes t o  b u i l d  

up a given percentage of t h e  inve r s ion  l a y e r  would be independent 

of the app l i ed  vo l t age  on the m e t a l .  I n  this case, the t i m e  rate 

of growth of the inve r s ion  l a y e r  can be u s e d 3 ~ 7 , 9  t o  c a l c u l a t e  

the su r face  r e s i s t i v i t y ,  Ra. On the o t h e r  hand, i f  the su r face  

conduct iv i ty  and the t o t a l  su r f ace  charge dens i ty  depend on t h e  

p o t e n t i a l  on the sur face ,  the t i m e  it takes t o  b u i l d  up a channel 

w i l l  be i n v e r s e l y  propor t iona l  t o  the app l i ed  vo l t age  on t h e  

m e t a l .  I n  t h i s  case, the t i m e  rate of growth of t h e  inve r s ion  

l a y e r  can be used t o  c a l c u l a t e  the mobi l i ty  of the s u r f a c e  ions.  

The appropr ia te  model i n  a p a r t i c u l a r  case depends on the 

ambient humidity,  t h e  c l e a n l i n e s s  of t h e  sur face ,  the oxide 

thickness ,  and the  app l i ed  vol tage .  One should expect  t h a t  a t  

l o w e r  vo l t ages  and on thicker oxides the n e t  su r f ace  charge 

dens i ty  would be r e l a t i v e l y  lower. Therefore, the t o t a l  su r f ace  

‘ 1  
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charge d e n s i t y  is  more l i k e l y  t o  be cons t an t  and the ana lyses  of 

Snow, Shockley e t  al., and Schroen should apply. A t  h ighe r  v o l t -  

ages,  on t h i n n e r  oxides and cleaner oxide su r faces ,  t h e  n e t  

charge d e n s i t y  w i l l  become s i g n i f i c a n t  i n  comparison w i t h  the 

t o t a l  s u r f a c e  charge dens i ty ,  and then  our  extended model 

repor ted  here is required. The p o s s i b i l i t y  e x i s t s  tcat on a 

given sample one might determine the su r face  conduct iv i ty  from 

d a t a  taken a t  low vo l t ages  and the i o n i c  mobi l i ty  from d a t a  taken 

a t  h igh  vol tages .  Having found the conduct iv i ty  and the mobi l i ty  

from d a t a  taken, one could c a l c u l a t e  an e f f e c t i v e  charge dens i ty  

fo r  t h e  reg ion  where Rn i s  cons tan t .  

Surfaces  should be compared on the basis of the r e l a t i v e  

t i m e  dependence of t h e i r  n e t  s u r f a c e  charge dens i ty  and n o t  on 

their r e l a t i v e  s a t u r a t i o n  level. The s a t u r a t i o n  l e v e l  does n o t  

depend on t h e  p r o p e r t i e s  of the sur face .  It  depends on t h e  geo- 

metry of  the device,  on the dopant dens i ty  of t he  semiconductor, 

and on the d i e l e c t r i c  cons t an t  and thickness  of the i n s u l a t o r .  

The t i m e  r a t e  of change of the n e t  su r f ace  charge dens i ty  is  a 

measure of the i o n i c  dens i ty  and mobili ty.  

TEST STRUCTURE 

W e  have developed a use fu l  simple test  s t r u c t u r e  f o r  

s tudying  su r face  ion  behavior.  Figure 1 i s  a photograph of the 

t o p  view of the t e s t  s t r u c t u r e .  "No p-n junc t ions  are d i f f u s e d  
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i n t o  the s i l i c o n  wafer.  These d i f f u s i o n  c u t s  are 5.25 m i l s  long 

and 0.50 m i l  wide. They are spaced one m i l  apa r t .  Contact  c u t s  

are made through t h e  oxide over these d i f f u s e d  regions;  then  

aluminum is  evaporated over the wafex. This is then d e l i n e a t e d  

i n t o  the p a t t e r n  shown t o  form c o n t a c t  lands and two m e t a l  elec- 

t rodes  that  l i e  over the oxide.  

Funct ional ly ,  s u r f a c e  ions  are d r i f t e d  by the a p p l i c a t i o n  of 

vo l t ages  on the two m e t a l  e l ec t rodes ,  A and B. When a s u f f i -  

c i e n t l y  l a r g e  n e t  s u r f a c e  charge dens i ty  is accumulated on the  

oxide i n  the region between the two d i f f u s e d  junc t ions  to  i n v e r t  

the underlying s i l i c o n ,  the electrical  r e s i s t a n c e  between t h e  

d i f f u s e d  junc t ions  i s  g r e a t l y  decreased. This is determined by 

measuring t h e  c u r r e n t  f l o w  between the junc t ions  under a l o w  

app l i ed  vol tage .  

The s u b s t r a t e  w a s  5 R-cm, n-type, and of (111) o r i e n t a t i o n .  

The oxide w a s  thermally grown t o  a th ickness  of 7000 A, had a 

Qss of 2.4 x 10l1 ~ r n ' ~ ,  and w a s  e s s e n t i a l l y  free of mobile ions.  

Advantages of t h i s  t e s t  s t r u c t u r e  are: 

1. It bears  a c l o s e  r e l a t i o n s h i p  t o  m i c r o c i r c u i t  

s t r u c t u r e s ,  

2. It can be b u i l t  i n t o  production wafers f o r  simple 

monitoring of  su r face  ion  problems, 

3. It can be sub jec t ed  t o  acce le ra t ed  t e s t i n g .  

' I  
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EXPERIMENTAL DATA 

The equipment f o r  measuring s u r f a c e  i o n  behavior is shown 

i n  Figure 2. The s i l i c o n  s u b s t r a t e  is connected t o  the d i f f u s e d  

reg ion  that  i s  b i a sed  as the source.  

A s  p rev ious ly  s t a t e d ,  the parameter tha t  is m o s t  u s e f u l  for  

comparing d i f f e r e n t  s u r f a c e s  is the t i m e  t h a t  it takes t o  develop 

a channel r a t h e r  than the level a t  w h i c h  t h e  channel s a t u r a t e s .  

W e  t h e r e f o r e  measure t h e  channel current ,  a t  an app l i ed  channel 

vo l t age  of  1 .5  V, as a func t ion  of t i m e  for a given condi t ion  of 

app l i ed  vo l t ages  t o  e l e c t r o d e s  A and B. W e  measured the t i m e  

dependence of  the development of the channel with an ion  d r i f t i n g  

vo l t age  on e i t h e r  e l e c t r o d e  A o r  electrode B, w h i l e  t h e  v o l t a g e  

on the o t h e r  e l e c t r o d e  w a s  zero.  Typical d a t a  has  the form shown 

i n  Figure 3. I f  the vo l t age  is app l i ed  t o  e l e c t r o d e  A, there i s  

an immediate inc rease  i n  channel c u r r e n t  because of  t h e  channel 

induced under e l e c t r o d e  A. Immediately, after t h e  vo l t age  is 

appl ied ,  n e t  i o n i c  su r face  charge b u i l d s  up on t h e  oxide ad jacen t  

t o  the m e t a l  and the channel widens i n t o  the reg ion  no t  covered 

by t he  metal. The growth of t h e  channel i s  shown i n  Figure 3 .  

An a n a l y s i s  of the d a t a  shows t h a t  the channel c u r r e n t  i nc reases  

as the square r o o t  of t i m e .  A l t e rna t ive ly ,  one can apply the 

vo l t age  t o  e l e c t r o d e  B and record da ta  such as t h a t  i l l u s t r a t e d  

by the second curve shown i n  Figure 3 .  I n  this case,  t h e r e  is a 
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delay  t i m e  before the channel is de tec t ed  because the su r face  

ions  spread  o u t  from e l e c t r o d e  B and a f i n i t e  t i m e  is  r equ i r ed  

t o  produce a channel between the d i f fused  junc t ions .  The a v a i l -  

a b i l i t y  of two e l ec t rodes ,  l o c a t e d  as these are, f o r  d r i f t i n g  

the su r face  ions  provides both a slow and a f a s t  way for  measur- 

i n g  a given su r face  condi t ion,  a u s e f u l  choice when ve ry  f a s t  o r  

ve ry  s l o w  e f f e c t s  are being s tudied .  It also provides  f o r  addi- 

t i o n a l  ways i n  w h i c h  t h e  model can be checked. 

Moisture i s  known t o  produce orders  of magnitude change i n  

the su r face  conduct ivi ty .  It  is a l s o  known that  ambient r e l a t i v e  

humidity s i g n i f i c a n t l y  inf luences  the k i n e t i c s  of channel forma- 

t i o n  and degradat ion of semiconductor devices.  The e f f e c t i v e n e s s  

of the tes t  s t r u c t u r e  descr ibed i n  th i s  paper i n  r evea l ing  the 

effects of moisture is shown i n  Figures 4 t o  6. Figure 4 shows 

the channel build-up f o r  31% and 80% relative humidity. The 

device w a s  unsealed. The measurements w e r e  taken a t  28OC. I n  

each case, there was -50 V on B and 0 V on A. 

To determine how quickly  su r face  i o n i c  behavior and l e v e l s  

of adsorbed w a t e r  can be inf luenced  by changing the r e l a t i v e  

humidity of the ambient, data w a s  taken i n  room a i r  under condi- 

t i o n s  i n  w h i c h  a stream of dry  n i t rogen  could  quick ly  be d i r e c t e d  

onto the device and quick ly  removed. Figure 5 shows  t h a t  su r f ace  

i o n  behavior can be d r a s t i c a l l y  a l t e r e d  i n  less than  one second 

.1 
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by quick ly  changing the  r e l a t i v e  humidity of the  ambient from 

48% t o  d ry  ((15 ppm H20) n i t rogen  and back t o  48%. 

Figure 6 p re sen t s  f u r t h e r  evidence tha t  w a t e r  is an 

important  determinant  of  su r f ace  i o n  behavior.  This device w a s  

s e a l e d  i n  d ry  ((15 ppm) n i t rogen  i n  a TO-5 package. It  w a s  n o t  

baked be fo re  s e a l i n g .  A channel was c r e a t e d  by b i a s i n g  for 

15 hours wi th  -50 V on A and 0 V on B a t  125°C. 

A was then  reduced t o  ze ro  and t h e  decay of the channel w a s  moni- 

t o r e d  a t  125OC. A f t e r  nea r ly  two hours,  t h e  temperature was 

The vo l t age  on 

lowered t o  25°C merely by t ak ing  the device from a w e l l  i n  a 

hea ted  aluminum block on a h o t  p l a t e .  Nothing else was done; 

t h e  u n i t  w a s  cont inuously i n  t h e  measuring c i r c u i t .  As the 

device cooled, the channel disappeared ve ry  quickly.  W e  i n t e r -  

p r e t e d  this  t o  mean t h a t  there is an adsorbed l a y e r  of w a t e r  a t  

room temperature t h a t  con ta ins  mobile s u r f a c e  ions and t h a t  a t  

125°C this  w a t e r  is  i n  the gaseous s ta te  and does n o t  c o n t r i b u t e  

as s t r o n g l y  t o  su r face  i o n  effects. 

Figure 7 shows the r e s u l t  of another  a t tempt  t o  determine 

the effects  of temperature.  This device had 7000 of thermally 

grown Si02. It  w a s  s e a l e d  i n  a hermetic  package i n  dry n i t rogen  

w i t h o u t  the vacuum bake. This d a t a  shows that  the effect  of 

temperature on su r face  ion  behavior i s  neg l ig ib l e .  The only 

effect  of temperature appears t o  be on the mobi l i ty  of t h e  
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c a r r i e r s  i n  t h e  inve r s ion  l aye r .  The effect  of temperature is 

probably q u i t e  complicated.  Temperature changes might i n f luence  

the ion dens i ty ,  t h e  ion  mobi l i ty ,  and the amount of  adsorbed 

moisture.  

Another important  v a r i a b l e  i s  t h e  t e s t i n g  h i s t o r y  of t h e  

device.  The t i m e  dependence of the channel c u r r e n t  depends on 

whether an induced accumulation of s u r f a c e  ions  from a preceed- 

ing  measurement had been r e tu rned  t o  t h e  i n i t i a l  condi t ion  

before the next  s e t  of  d a t a  w a s  taken. 

tha t  the f i rs t  t i m e  we d r i f t  s u r f a c e  ions,  they move more slowly 

than they do i n  subsequent measurements w i t h i n  a pe r iod  of up t o  

W e  f i n d  c o n s i s t e n t l y  

f i v e  o r  t e n  hours.  A f t e r  2 4  hours,  t h e  ra te  of motion w a s  

almost as slow a s  it was o r i g i n a l l y .  F i g u r e ' 8  demonstrates this 

effect. One might i n f e r  that  t r app ing  o r  recombination i s  

involved i n  the su r face  ion  behavior.  

Figure 9 aga in  i l l u s t r a t e s  the effect  of  the t e s t i n g  

h i s t o r y  on surface ion  behavior.  I n  t h i s  case, the decay of  t h e  

channel is  observed af ter  the vo l t age  on A has been lowered t o  

zero.  The v a r i a b l e  from curve t o  curve was the t i m e  t h a t  t h e  

vo l t age  had been on A before it w a s  decreased t o  zero.  

From the f o r m  of our so lu t ion ,  equat ion (121, one can i n f e r  

that i f  the t i m e  r equ i r ed  t o  b u i l d  up a channel i s  i n v e r s e l y  

propor t iona l  t o  the vo l t age  on the metal  e l ec t rode ,  the charge 
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d e n s i t y  i s  p ropor t iona l  t o  the su r face  p o t e n t i a l  of t h e  oxide.  

I f  this t i m e  i s  independent of the app l i ed  vol tage ,  then one can 

i n f e r ,  as d i d  t h e  previous i n v e s t i g a t o r s ,  that  t h e  s u r f a c e  con- 

d u c t i v i t y  i s  a cons tan t ,  independent of the su r face  p o t e n t i a l .  

W e  have at tempted t o  t ake  d a t a  t h a t  would c l e a r l y  permit  d i s t i n -  

gu ish ing  between these  two p o s s i b i l i t i e s .  W e  found the same 

square r o o t  of t i m e  dependence for  the build-up of a channel a s  

tha t  r epor t ed  by previous i n v e s t i g a t o r s .  Figure 10  shows data 

from w h i c h  one might i n f e r  that  a t  low vo l t ages  the su r face  

charge d e n s i t y  i s  f a i r l y  cons t an t  and a t  h igh  vo l t ages  it is 

p ropor t iona l  t o  the su r face  p o t e n t i a l  of the oxide. This device 

w a s  s e a l e d  i n  d ry  N2. 

Two a d d i t i o n a l  p o i n t s  can be made wi th  the d a t a  i n  

Figure 10. F i r s t ,  the 50-volt  curve s t a r t e d  t o  l e v e l  o f f  a t  a 

s u r p r i s i n g l y  l o w  cu r ren t .  W e  f i n d  t h a t  a t  the .50-volt l e v e l ,  

the s a t u r a t i o n  l e v e l  of channel c u r r e n t  depends on whether the 

1 . 5  V is  on the channel during the d r i f t i n g  of the su r face  ions.  

Without the 1.5 V on the channel during the time'when the ions  

w e r e  be ing  d r i f t e d ,  s a t u r a t i o n  would have occurred a t  a c u r r e n t  

two orders of  magnitude h igher .  Second, t h i s  da t a  can be used 

t o  make an estimate of  the mobi l i ty  of t h e  su r face  ions.  Assum- 

i n g  that  the turn-on t i m e  i s  a measure of  the t r a n s i t  t i m e  of 

t h e  s u r f a c e  ions  under the app l i ed  vol tage ,  and t h a t  the path 
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l ength  ( L )  is the d i s t a n c e  (17.5 p) from the edge of e l e c t r o d e  B 

t o  the ends of the d i f f u s e d  junc t ions ,  one can roughly ca lcu la t ;  

a mobi l i ty  by 

P =  

where P =  

v =  

E =  

& =  

t =  

v =  

the equat ion:  

2 

E t V  
v , L  

J 

m o b i  1 i t y  , 

average v e l o c i t y ,  

average f i e l d ,  

17 .5  microns, 

turn-on t i m e ,  

vo l tage .  

I n  this case, p, is  c a l c u l a t e d  t o  be roughly cm2/V-sec. 

Shockley e t  a1.3 repor ted  t h a t  their mobi l i ty  w a s  less than  

lo-* cm2/V-sec.  

c u l a t e d  mobi l i ty  of approximately cm2/V-sec. 

S i m i l a r  d a t a  f o r  another  device y i e lded  a ca l -  

Figure 11 shows the r e s u l t s  of o t h e r  e f f o r t s  t o  determine 

the e f f e c t  of the vo l t age  on the turn-on t i m e  of the channel 

cu r ren t .  I n  these r e s u l t s ,  the vol tage  dependence is much less 

clear. I t  may be that  a t  69% r e l a t i v e  humidity,  the t o t a l  sur -  

face ion  dens i ty  before  a d r i f t i n g  vol tage  i s  app l i ed  is h ighe r  

than it is  i n  a sealed package i n  dry  ni t rogen,  and therefore 

the n e t  charge may n o t  c o n t r i b u t e  a s  s i g n i f i c a n t l y  t o  the t o t a l  

charge as it d i d  i n  the s e a l e d  package. Secondly, the r e l a t i v e  
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number of  two o r  more types of ions  with d i f f e r i n g  mob i l i t y  may 

change with l a r g e  changes i n  humidity l e v e l ,  and t h e r e f o r e  the 

vo l t age  dependence of t h e  turn-on t i m e  may be d i f f e r e n t  i n  s i t u -  

a t i o n s  w i t h  d i f f e r e n t  r e l a t i v e  humidity l e v e l s .  

SUMMARY AND CONCLUS I O N S  

A tes t  s t r u c t u r e  has been descr ibed  t h a t  provides  a u s e f u l  

and simple means for  s tudying  both t h e  behavior and the e f f e c t s  

of s u r f a c e  ions on p l ana r  semiconductor s t r u c t u r e s .  

The theory of s u r f a c e  ion  behavior has  been extended t o  

inc lude  the s i t u a t i o n  i n  w h i c h  the s u r f a c e  ion  d e n s i t y  is  depend- 

e n t  on the app l i ed  p o t e n t i a l .  It w a s  shown that  t h e  c r i t e r i o n  

used by previous i n v e s t i g a t o r s  f o r  demonstrating t h a t  the su r face  

conduc t iv i ty  is c o n s t a n t  is inva l id .  The previous model, which 

assumed a cons t an t  s u r f a c e  conduct iv i ty ,  is  most l i k e l y  t o  be 

v a l i d  a t  low app l i ed  vol tages ,  on t h i c k  oxide layers ,  and w i t h  

r e l a t i v e l y  unclean oxide su r faces .  The ex tens ion  of  the model 

descr ibed  he re in ,  which takes i n t o  account a changing su r face  

charge dens i ty  due t o  a changing su r face  p o t e n t i a l  of the oxide, 

is  more l i k e l y  t o  apply a t  h igh  app l i ed  vol tages ,  on t h i n  oxides, 

and on oxides w i t h  c l ean  su r faces .  A c r i t e r i o n  i s  given for  

determining which model best desc r ibes  a given oxide i n  a given 

s e t  of t es t  condi t ions .  A technique has been presented  for  ob- 

t a i n i n g  a rough e s t ima te  of the mobi l i ty  of su r face  ions. 

Mobil i ty  va lues  of 10” l2  t o  10-11 cm2/V-sec w e r e  measured. 
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Experimental  d a t a  taken w i t h  this t e s t  s t r u c t u r e  show the 

dependence of t h e  k i n e t i c s  of s u r f a c e  i o n  behavior on t i m e ,  

humidity,  temperature,  vo l tage ,  and the previous t e s t i n g  h i s t o r y  

of the device.  Ambient humidity i s  the m o s t  important v a r i a b l e  

in f luenc ing  the k i n e t i c s  of s u r f a c e  ion  behavior.  Sur face  ion  

behavior has been observed t o  change d r a s t i c a l l y  i n  t i m e s  s h o r t e r  

than  one second, due t o  changes i n  the r e l a t i v e  humidity of the 

ambient. On some he rme t i ca l ly  s e a l e d  devices,  su r f ace  ions  have 

been observed t o  move faster a t  room temperature than a t  125OC. 

This may be due t o  d i f f e rences  i n  the amount of w a t e r  adsorbed 

on the oxide su r face  a t  the t w o  temperatures.  On the o t h e r  hand, 

on other s i m i l a r  devices,  temperature appears t o  have very  l i t t l e  

e f f e c t  on su r face  ion  behavior.  W e  f i n d  t h a t  s u r f a c e  ion  behav- 

i o r  is  s t r o n g l y  dependent on the t e s t i n g  h i s t o r y  of the device,  

that  is, s u r f a c e  ions  move much faster the second t i m e  they are 

d r i f t e d  (within a pe r iod  of  t e n s  of hours)  than  the f irst  t i m e .  
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Figure  1. Top view of s u r f a c e  i o n  tes t  s t r u c t u r e .  
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Figure 2. Surface ion measurement equipment. 
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APPENDIX C 

NEW TECHNOLOGY 

To conform to the requirements of the New Technology 

clause of the Contract NAS12-544, a review meeting was held 

to determine the reportable items. Personnel participating 

in the review included G.L. Schnable, the Program Manager, 

and E.S. Schlegel, the principal investigator on the program. 

A list of reportable items is given below. The items 

are innovations or improvements in the technology. No inven- 

tions were made during the performance of the work under the 

contract and no invention disclosures have been prepared. 

Philco-Ford does not consider these items to be susceptible 

to protection under United States patent laws and thus does 

not consider the provisions of parts (1) and (2) under para- 

graph (h) of Section I11 of the New Technology clause to be 

applicable. 

No subcontracts were let under this contract. 

1. Improved model for the kinetics of surface ion migration. 

(Pages 28-35; Appendix B) . 
Based on theoretical and empirical studies an improvement 

has been made in the model for the kinetics of ion migration 

on the outer surface of a microcircuit. The previous model 
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assumed that the surface conductivity is a constant. We have 

extended the analysis to take into account the dependence of 

the density of surface ions on the surface potential of the 

oxide. In this case the surface conductivity is time- and 

space-dependent. We have also demonstrated that the criterion 

used for testing the validity of the earlier assumption is 

not valid. 

2. Low temperature phosphosilicate getters mobile ions. 

(Pages 13-14; 16-17.) 

It has been demonstrated on this program that phospho- 

silicate layers that are vapor deposited at 4OO0C, getter 

mobile ions. It was previously known that phosphosilicate 

layers, formed by diffusion at much higher temperatures, 

effectively getter mobile ions. However, it is not possible 

to diffuse phosphorus into second layer oxides because the 

underlying aluminum layer forms an Al-Si eutectic which 

melts at 577OC. 

temperature such as 4OO0C makes it possible to deposit a 

gettering second layer oxide material over aluminum metali- 

zat ion. 

Vapor deposition of phosphosilicate at a 

3 .  Low temperature phosphosilicate improves the reproducibility 

of the electrical properties of oxide layers. (Pages 47-52.) 

Experimental data taken on this program indicates that 
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the inclusion of phosphorus in vapor deposited (400OC) Si0 
2 

significantly improves the reproducibility of the electrical 

properties of structures consisting of vapor deposited Si02 

over thermally oxidized silicon. 

4. Increasing dielectric thickness to reduce surface ion 

caused instability. (Pages 71-72.) 

During this program, in connection with a detailed study 

of surface ion kinetics, it became apparent that surface ion 

effects can be best prevented by increasing the total thickness 

of the dielectric layers in the LSI structure. Flat band and 

inversion voltages are proportional to the total thickness 

of the dielectric layer. The surface potential that can be 

developed on the dielectric surface, at the dielectric-ambient 

interface, is determined by the voltage applied to the device. 

Therefore for a given operating voltage the problems of surface 

ions can be decreased by the use of dielectric layers having 

a greater total thickness. 
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